

Two Scoops of Django
Best Practices For Django 1.5

Daniel Greenfeld
Audrey Roy

Two Scoops of Django: Best Practices for Django 1.5
First Edition, Final Version, 20130823
by Daniel Greenfeld and Audrey Roy

Copyright c⃝ 2013 Daniel Greenfeld, Audrey Roy, and Cartwheel Web.

All rights reserved. is book may not be reproduced in any form, in whole or in part, without written permission from the
authors, except in the case of brief quotations embodied in articles or reviews.

Limit of Liability and Disclaimer of Warranty: e authors have used their best efforts in preparing this book, and the
information provided herein “as is.” e information provided is sold without warranty, either express or implied. Neither the
authors nor Cartwheel Web will be held liable for any damages to be caused either directly or indirectly by the contents of
this book.

Trademarks: Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an
editorial fashion and to the bene t of the trademark owner with no intention of infringement of the trademark.

ird printing, August 2013

For more information, visit https://django.2scoops.org.

https://django.2scoops.org

For Malcolm Tredinnick
1971-2013

We miss you.

iii

Contents

List of Figures xv

List of Tables xvii

Authors’ Notes xix
A Few Words From Daniel Greenfeld . xix
A Few Words From Audrey Roy . xx

Introduction xxi
A Word About Our Recommendations . xxi
Why Two Scoops of Django? . xxii
Before You Begin . xxiii

is book is intended for Django 1.5 and Python 2.7.x xxiii
Each Chapter Stands On Its Own . xxiii

Conventions Used in is Book . xxiv
Core Concepts . xxv

Keep It Simple, Stupid . xxv
Fat Models, Helper Modules, in Views, Stupid Templates xxvi
Start With Django By Default . xxvi
Stand on the Shoulders of Giants . xxvi

1 Coding Style 1
1.1 e Importance of Making Your Code Readable 1
1.2 PEP 8 . 2
1.3 e Word on Imports . 2
1.4 Use Explicit Relative Imports . 3
1.5 Avoid Using Import * . 6
1.6 Django Coding Style Guidelines . 7

iv

Contents

1.7 Never Code to the IDE (or Text Editor) . 8
1.8 Summary . 8

2 e Optimal Django Environment Setup 9
2.1 Use the Same Database Engine Everywhere . 9

2.1.1 Fixtures Are Not a Magic Solution . 9
2.1.2 You Can’t Examine an Exact Copy of Production Data Locally 10
2.1.3 Different Databases Have Different Field Types/Constraints 10

2.2 Use Pip and Virtualenv . 11
2.3 Install Django and Other Dependencies via Pip 13
2.4 Use a Version Control System . 14
2.5 Summary . 14

3 How to Lay Out Django Projects 15
3.1 Django 1.5’s Default Project Layout . 15
3.2 Our Preferred Project Layout . 16

3.2.1 Top Level: Repository Root . 16
3.2.2 Second Level: Django Project Root . 16
3.2.3 ird Level: Con guration Root . 17

3.3 Sample Project Layout . 17
3.4 What About the Virtualenv? . 20
3.5 Using a Startproject Template to Generate Our Layout 21
3.6 Other Alternatives . 22
3.7 Summary . 22

4 Fundamentals of Django App Design 23
4.1 e Golden Rule of Django App Design . 23

4.1.1 A Practical Example of Apps in a Project 24
4.2 What to Name Your Django Apps . 25
4.3 When in Doubt, Keep Apps Small . 26
4.4 Summary . 26

5 Settings and Requirements Files 27
5.1 Avoid Non-Versioned Local Settings . 28
5.2 Using Multiple Settings Files . 29

5.2.1 A Development Settings Example . 32
5.2.2 Multiple Development Settings . 33

v

Contents

5.3 Keep Secret Keys Out With Environment Variables 34
5.3.1 A Caution Before Using Environment Variables for Secrets 35
5.3.2 How to Set Environment Variables Locally 35

5.4 How to Set Environment Variables in Production 37
5.4.1 Handling Missing Secret Key Exceptions 38

5.5 Using Multiple Requirements Files . 40
5.5.1 Installing From Multiple Requirements Files 41
5.5.2 Using Multiple Requirements Files With Platforms as a Service (PaaS) . . 42

5.6 Handling File Paths in Settings . 42
5.7 Summary . 45

6 Database/Model Best Practices 47
6.1 Basics . 48

6.1.1 Break Up Apps With Too Many Models 48
6.1.2 Don’t Drop Down to Raw SQL Until It’s Necessary 48
6.1.3 Add Indexes as Needed . 49
6.1.4 Be Careful With Model Inheritance . 49
6.1.5 Model Inheritance in Practice: e TimeStampedModel 51
6.1.6 Use South for Migrations . 53

6.2 Django Model Design . 53
6.2.1 Start Normalized . 54
6.2.2 Cache Before Denormalizing . 54
6.2.3 Denormalize Only if Absolutely Needed 54
6.2.4 When to Use Null and Blank . 55

6.3 Model Managers . 56
6.4 Summary . 58

7 Function- and Class-Based Views 61
7.1 When to Use FBVs or CBVs . 61
7.2 Keep View Logic Out of URLConfs . 63
7.3 Stick to Loose Coupling in URLConfs . 64

7.3.1 What if we aren’t using CBVs? . 66
7.4 Try to Keep Business Logic Out of Views . 66
7.5 Summary . 66

8 Best Practices for Class-Based Views 69

vi

Contents

8.1 Using Mixins With CBVs . 70
8.2 Which Django CBV Should Be Used for What Task? 72
8.3 General Tips for Django CBVs . 73

8.3.1 Constraining Django CBV Access to Authenticated Users 73
8.3.2 Performing Custom Actions on Views With Valid Forms 74
8.3.3 Performing Custom Actions on Views With Invalid Forms 75

8.4 How CBVs and Forms Fit Together . 76
8.4.1 Views + ModelForm Example . 77
8.4.2 Views + Form Example . 81

8.5 Summary . 83

9 Common Patterns for Forms 85
9.1 e Power of Django Forms . 85
9.2 Pattern 1: Simple ModelForm With Default Validators 86
9.3 Pattern 2: Custom Form Field Validators in ModelForms 87
9.4 Pattern 3: Overriding the Clean Stage of Validation 91
9.5 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model) 94
9.6 Pattern 5: Reusable Search Mixin View . 98
9.7 Summary . 100

10 More ings to Know About Forms 101
10.1 Use the POST Method in HTML Forms . 101

10.1.1 Don’t Disable Django’s CSRF Protection 102
10.2 Know How Form Validation Works . 102

10.2.1 Form Data Is Saved to the Form, en the Model Instance 103
10.3 Summary . 104

11 Building REST APIs in Django 105
11.1 Fundamentals of Basic REST API Design . 105
11.2 Implementing a Simple JSON API . 107
11.3 REST API Architecture . 110

11.3.1 Code for an App Should Remain in the App 110
11.3.2 Try to Keep Business Logic Out of API Views 110
11.3.3 Grouping API URLs . 110
11.3.4 Test Your API . 112

11.4 AJAX and the CSRF Token . 112

vii

Contents

11.4.1 Posting Data via AJAX . 112
11.5 Additional Reading . 114
11.6 Summary . 114

12 Templates: Best Practices 115
12.1 Follow a Minimalist Approach . 115
12.2 Template Architecture Patterns . 116

12.2.1 2-Tier Template Architecture Example 116
12.2.2 3-Tier Template Architecture Example 116
12.2.3 Flat Is Better an Nested . 117

12.3 Limit Processing in Templates . 118
12.3.1 Gotcha 1: Aggregation in Templates . 120
12.3.2 Gotcha 2: Filtering With Conditionals in Templates 122
12.3.3 Gotcha 3: Complex Implied Queries in Templates 124
12.3.4 Gotcha 4: Hidden CPU Load in Templates 125
12.3.5 Gotcha 5: Hidden REST API Calls in Templates 126

12.4 Don’t Bother Making Your Generated HTML Pretty 126
12.5 Exploring Template Inheritance . 127
12.6 block.super Gives the Power of Control . 131
12.7 Useful ings to Consider . 132

12.7.1 Avoid Coupling Styles Too Tightly to Python Code 132
12.7.2 Common Conventions . 133
12.7.3 Location, Location, Location! . 133
12.7.4 Use Named Context Objects . 133
12.7.5 Use URL Names Instead of Hardcoded Paths 134
12.7.6 Debugging Complex Templates . 135
12.7.7 Don’t Replace the Django Template Engine 135

12.8 Summary . 135

13 Template Tags and Filters 137
13.1 Filters Are Functions . 137

13.1.1 Filters Are Easy to Test . 138
13.1.2 Filters, Code Reuse, and Performance 138
13.1.3 When to Write Filters . 138

13.2 Custom Template Tags . 138
13.2.1 Template Tags Are Harder To Debug 139

viii

Contents

13.2.2 Template Tags Make Code Reuse Harder 139
13.2.3 e Performance Cost of Template Tags 139
13.2.4 When to Write Template Tags . 139

13.3 Naming Your Template Tag Libraries . 140
13.4 Loading Your Template Tag Modules . 141

13.4.1 Watch Out for is Crazy Anti-Pattern 141
13.5 Summary . 142

14 Tradeoffs of Replacing Core Components 143
14.1 e Temptation to Build FrankenDjango . 144
14.2 Case Study: Replacing the Django Template Engine 144

14.2.1 Excuses, Excuses . 144
14.2.2 What if I’m Hitting the Limits of Templates? 145
14.2.3 What About My Unusual Use Case? . 145

14.3 Summary . 146

15 Working With the Django Admin 147
15.1 It’s Not for End Users . 147
15.2 Admin Customization vs. New Views . 147
15.3 Viewing String Representations of Objects . 148
15.4 Adding Callables to ModelAdmin Classes . 151
15.5 Django’s Admin Documentation Generator . 152
15.6 Securing the Django Admin and Django Admin Docs 153
15.7 Summary . 153

16 Dealing With the User Model 155
16.1 Use Django’s Tools for Finding the User Model 155

16.1.1 Use settings.AUTH USER MODEL for Foreign Keys to User 156
16.2 Custom User Fields for Projects Starting at Django 1.5 156

16.2.1 Option 1: Linking Back From a Related Model 157
16.2.2 Option 2: Subclass AbstractUser . 158
16.2.3 Option 3: Subclass AbstractBaseUser . 159

16.3 Summary . 165

17 Django’s Secret Sauce: ird-Party Packages 167
17.1 Examples of ird-Party Packages . 167
17.2 Know About the Python Package Index . 168

ix

Contents

17.3 Know About DjangoPackages.com . 168
17.4 Know Your Resources . 168
17.5 Tools for Installing and Managing Packages . 169
17.6 Package Requirements . 169
17.7 Wiring Up Django Packages: e Basics . 169

17.7.1 Step 1: Read the Documentation for the Package 169
17.7.2 Step 2: Add Package and Version Number to Your Requirements 170
17.7.3 Step 3: Install the Requirements Into Your Virtualenv 171
17.7.4 Step 4: Follow the Package’s Installation Instructions Exactly 171

17.8 Troubleshooting ird-Party Packages . 171
17.9 Releasing Your Own Django Packages . 172
17.10What Makes a Good Django Package? . 172

17.10.1 Purpose . 173
17.10.2 Scope . 173
17.10.3 Documentation . 173
17.10.4 Tests . 173
17.10.5 Activity . 174
17.10.6 Community . 174
17.10.7 Modularity . 174
17.10.8 Availability on PyPI . 174
17.10.9 Proper Version Numbers . 175
17.10.10 License . 175
17.10.11 Clarity of Code . 176

17.11Summary . 176

18 Testing Stinks and Is a Waste of Money! 179
18.1 Testing Saves Money, Jobs, and Lives . 179
18.2 How to Structure Tests . 180
18.3 How to Write Unit Tests . 181

18.3.1 Each Test Method Tests One ing . 181
18.3.2 Don’t Write Tests at Have to Be Tested 184
18.3.3 Don’t Rely on Fixtures . 185
18.3.4 ings at Should Be Tested . 185

18.4 Continuous Integration . 187
18.4.1 Resources for Continuous Integration 187

18.5 Who Cares? We Don’t Have Time for Tests! . 187

x

Contents

18.6 e Game of Test Coverage . 188
18.7 Setting Up the Test Coverage Game . 188

18.7.1 Step 1: Set Up a Test Runner . 188
18.7.2 Step 2: Run Tests and Generate Coverage Report 189
18.7.3 Step 3: Generate the report! . 190

18.8 Playing the Game of Test Coverage . 191
18.9 Summary . 191

19 Documentation: Be Obsessed 193
19.1 Use reStructuredText for Python Docs . 193

19.1.1 Use Sphinx to Generate Documentation From reStructuredText 195
19.2 What Docs Should Django Projects Contain? . 196
19.3 Wikis and Other Documentation Methods . 197
19.4 Summary . 197

20 Finding and Reducing Bottlenecks 199
20.1 Should You Even Care? . 199
20.2 Speed Up Query-Heavy Pages . 199

20.2.1 Find Excessive Queries With Django Debug Toolbar 199
20.2.2 Reduce the Number of Queries . 200
20.2.3 Speed Up Common Queries . 201

20.3 Get the Most Out of Your Database . 202
20.3.1 Know What Doesn’t Belong in the Database 202
20.3.2 Getting the Most Out of PostgreSQL 203
20.3.3 Getting the Most Out of MySQL . 203

20.4 Cache Queries With Memcached or Redis . 203
20.5 Identify Speci c Places to Cache . 204
20.6 Consider ird-Party Caching Packages . 204
20.7 Compression and Mini cation of HTML, CSS, and JavaScript 205
20.8 Use Upstream Caching or a Content Delivery Network 206
20.9 Other Resources . 206
20.10Summary . 207

21 Security Best Practices 209
21.1 Harden Your Servers . 209
21.2 Know Django’s Security Features . 209

xi

Contents

21.3 Turn Off DEBUG Mode in Production . 210
21.4 Keep Your Secret Keys Secret . 210
21.5 HTTPS Everywhere . 210

21.5.1 Use Secure Cookies . 211
21.5.2 Use HTTP Strict Transport Security (HSTS) 212

21.6 Use Django 1.5’s Allowed Hosts Validation . 213
21.7 Always Use CSRF Protection With HTTP Forms at Modify Data 213

21.7.1 Posting Data via AJAX . 214
21.8 Prevent Against Cross-Site Scripting (XSS) Attacks 214
21.9 Defend Against Python Code Injection Attacks 215

21.9.1 Python Built-ins at Execute Code . 215
21.9.2 Python Standard Library Modules at Can Execute Code 215
21.9.3 ird-Party Libraries at Can Execute Code 215

21.10Validate All User Input With Django Forms . 216
21.11Handle User-Uploaded Files Carefully . 218
21.12Don’t Use ModelForms.Meta.exclude . 219
21.13Beware of SQL Injection Attacks . 222
21.14Never Store Credit Card Data . 222
21.15Secure the Django Admin . 222

21.15.1 Change the Default Admin URL . 223
21.15.2 Use django-admin-honeypot . 223
21.15.3 Only Allow Admin Access via HTTPS 223
21.15.4 Limit Admin Access Based on IP . 224
21.15.5 Use the allow tags Attribute With Caution 224

21.16Secure the Admin Docs . 224
21.17Monitor Your Sites . 224
21.18Keep Your Dependencies Up-to-Date . 225
21.19Prevent Clickjacking . 225
21.20Give Your Site a Security Checkup . 225
21.21Put Up a Vulnerability Reporting Page . 225
21.22Keep Up-to-Date on General Security Practices 226
21.23Summary . 226

22 Logging: What’s It For, Anyway? 227
22.1 Application Logs vs. Other Logs . 227
22.2 Why Bother With Logging? . 228

xii

Contents

22.3 When to Use Each Log Level . 228
22.3.1 Log Catastrophes With CRITICAL . 229
22.3.2 Log Production Errors With ERROR 229
22.3.3 Log Lower-Priority Problems With WARNING 230
22.3.4 Log Useful State Information With INFO 231
22.3.5 Log Debug-Related Messages to DEBUG 231

22.4 Log Tracebacks When Catching Exceptions . 233
22.5 One Logger Per Module at Uses Logging . 234
22.6 Log Locally to Rotating Files . 234
22.7 Other Logging Tips . 235
22.8 Necessary Reading Material . 236
22.9 Useful ird-Party Tools . 236
22.10Summary . 236

23 Signals: Use Cases and Avoidance Techniques 237
23.1 When to Use and Avoid Signals . 237
23.2 Signal Avoidance Techniques . 238

23.2.1 Using Custom Model Manager Methods Instead of Signals 238
23.2.2 Validate Your Model Elsewhere . 241
23.2.3 Override Your Model’s Save or Delete Method Instead 241

24 What About ose Random Utilities? 243
24.1 Create a Core App for Your Utilities . 243
24.2 Django’s Own Swiss Army Knife . 244

24.2.1 django.contrib.humanize . 245
24.2.2 django.utils.html.remove tags(value, tags) 245
24.2.3 django.utils.html.strip tags(value) . 245
24.2.4 django.utils.text.slugify(value) . 245
24.2.5 django.utils.timezone . 246
24.2.6 django.utils.translation . 246

24.3 Summary . 247

25 Deploying Django Projects 249
25.1 Using Your Own Web Servers . 249
25.2 Using a Platform as a Service . 250
25.3 Summary . 252

xiii

Contents

26 Where and How to Ask Django Questions 253
26.1 What to Do When You’re Stuck . 253
26.2 How to Ask Great Django Questions in IRC . 253
26.3 Insider Tip: Be Active in the Community . 254

26.3.1 10 Easy Ways to Participate . 254
26.4 Summary . 255

27 Closing oughts 257

Appendix A: Packages Mentioned In is Book 259

Appendix B: Troubleshooting 263
Identifying the Issue . 263
Our Recommended Solutions . 263

Check Your Virtualenv Installation . 264
Check If Your Virtualenv Has Django 1.5 Installed 265
Check For Other Problems . 265

Appendix C: Additional Resources 267
Beginner Material . 267
More Advanced Material . 268
Other Material on Best Practices . 268

Acknowledgments 271

Index 277

xiv

List of Figures

1 rowing caution to the wind. xxii

1.1 Using import * in an ice cream shop. 7

2.1 Pip, virtualenv, and virtualenvwrapper in ice cream bar form. 13

3.1 ree-tiered scoop layout. 17
3.2 Project layout differences of opinion can cause ice cream ghts. 22

4.1 Our vision for Icecreamlandia. 25

5.1 Over 130 settings are available to you in Django 1.5. 27

6.1 A common source of confusion. 56

7.1 Should you use a FBV or a CBV? ow chart. 62

8.1 Popular and unpopular mixins used in ice cream. 70
8.2 e other CBV: class-based vanilla ice cream. 76
8.3 Views + ModelForm Flow . 78
8.4 Views + Form Flow . 82

12.1 An excerpt from the Zen of Ice Cream. 117
12.2 Bubble gum ice cream looks easy to eat but requires a lot of processing. 125

15.1 Admin list page for an ice cream bar app. 148
15.2 Improved admin list page with better string representation of our objects. 149
15.3 Improved admin list page with better string representation of our objects. 150
15.4 Displaying URL in the Django Admin. 152

16.1 is looks strange too. 156

xv

List of Figures

18.1 Test as much of your project as you can, as if it were free ice cream. 186

19.1 Even ice cream could bene t from documentation. 197

22.1 CRITICAL/ERROR/WARNING/INFO logging in ice cream 228
22.2 Appropriate usage of DEBUG logging in ice cream. 233

25.1 How ice cream is deployed to cones and bowls. 252

xvi

List of Tables

Author’s Ice Cream Preferences . xxv

1.1 Imports: Absolute vs. Explicit Relative vs. Implicit Relative 5

3.1 Repository Root Files and Directories . 19
3.2 Django Project Files and Directories . 20

5.1 Settings les and their purpose . 30
5.2 Setting DJANGO SETTINGS MODULE per location 31

6.1 Pros and Cons of the Model Inheritance Styles 50
6.2 When To use Null and Blank by Field . 56

8.1 Django CBV Usage Table . 72

11.1 HTTP Methods . 106
11.2 HTTP Status Codes . 107
11.3 URLConf for the Flavor REST APIs . 109

12.1 Template Tags in base.html . 129
12.2 Template Objects in about.html . 130

14.1 Fad-based Reasons to Replace Components of Django 144

19.1 Documentation Django Projects Should Contain 196

25.1 Gunicorn vs Apache . 250

xvii

List of Tables

xviii

Authors' Notes

A Few Words From Daniel Greenfeld

In the spring of 2006, I was working for NASA on a project that implemented a Java-based RESTful
web service that was taking weeks to deliver. One evening, when management had left for the day, I
reimplemented the service in Python in 90 minutes.

I knew then that I wanted to work with Python.

I wanted to use Django for the web front-end of the web service, but management insisted on using
a closed-source stack because “Django is only at version 0.9x, hence not ready for real projects.” I
disagreed, but stayed happy with the realization that at least the core architecture was in Python.
Django used to be edgy during those heady days, and it scared people the same way that Node.js
scares people today.

Nearly seven years later, Django is considered a mature, powerful, secure, stable framework used
by incredibly successful corporations (Instagram, Pinterest, Mozilla, etc.) and government agencies
(NASA, et al) all over the world. Convincing management to use Django isn’t hard anymore, and if
it is hard to convince them, nding jobs which let you use Django has become much easier.

In my 6+ years of building Django projects, I’ve learned how to launch new web applications with
incredible speed while keeping technical debt to an absolute minimum.

My goal in this book is to share with you what I’ve learned. My knowledge and experience have been
gathered from advice given by core developers, mistakes I’ve made, successes shared with others, and
an enormous amount of note taking. I’m going to admit that the book is opinionated, but many of
the leaders in the Django community use the same or similar techniques.

xix

List of Tables

is book is for you, the developers. I hope you enjoy it!

A Few Words From Audrey Roy

I rst discovered Python in a graduate class at MIT in 2005. In less than 4 weeks of homework
assignments, each student built a voice-controlled system for navigating between rooms in MIT’s
Stata Center, running on our HP iPaqs running Debian. I was in awe of Python and wondered why
it wasn’t used for everything. I tried building a web application with Zope but struggled with it.

A couple of years passed, and I got drawn into the Silicon Valley tech startup scene. I wrote graphics
libraries in C and desktop applications in C++ for a startup. At some point, I left that job and picked
up painting and sculpture. Soon I was drawing and painting frantically for art shows, co-directing a
140-person art show, and managing a series of real estate renovations. I realized that I was doing a
lot at once and had to optimize. Naturally, I turned to Python and began writing scripts to generate
some of my artwork. at was when I rediscovered the joy of working with Python.

Many friends from the Google App Engine, SuperHappyDevHouse, and hackathon scenes in Silicon
Valley inspired me to get into Django. rough them and through various freelance projects and
partnerships I discovered how powerful Django was.

Before I knew it, I was attending PyCon 2010, where I met my ance Daniel Greenfeld. We met at
the end of James Bennett’s Django In Depth tutorial, and now this chapter in our lives has come full
circle with the publication of this book.

Django has brought more joy to my life than I thought was possible with a web framework. My goal
with this book is to give you the thoughtful guidance on common Django development practices that
are normally left unwritten (or implied), so that you can get past common hurdles and experience
the joy of using the Django web framework for your projects.

xx

Introduction

Our aim in writing this book is to write down all of the unwritten tips, tricks, and common practices
that we’ve learned over the years while working with Django.

While writing, we’ve thought of ourselves as scribes, taking the various things that people assume
are common knowledge and recording them with simple examples.

A Word About Our Recommendations

Like the official Django documentation, this book covers how to do things in Django, illustrating
various scenarios with code examples.

Unlike the Django documentation, this book recommends particular coding styles, patterns, and
library choices. While core Django developers may agree with some or many of these choices, keep
in mind that many of our recommendations are just that: personal recommendations formed after
years of working with Django.

roughout this book, we advocate certain practices and techniques that we consider to be the best
approaches. We also express our own personal preferences for particular tools and libraries.

Sometimes we reject common practices that we consider to be anti-patterns. For most things we
reject, we try to be polite and respectful of the hard work of the authors. ere are the rare, few
things that we may not be so polite about. is is in the interest of helping you avoid dangerous
pitfalls.

We have made every effort to give thoughtful recommendations and to make sure that our practices
are sound. We’ve subjected ourselves to harsh, nerve-wracking critiques from Django core developers

xxi

Chapter 0: Introduction

whom we greatly respect. We’ve had this book reviewed by more technical reviewers than the average
technical book, and we’ve poured countless hours into revisions. at being said, there is always the
possibility of errors or omissions. ere is also the possibility that better practices may emerge than
those described here.

We are fully committed to iterating on and improving this book, and we mean it. If you see any
practices that you disagree with or anything that can be done better, we humbly ask that you send us
your suggestions for improvements.

Please don’t hesitate to tell us what can be improved. We will take your feedback constructively. If
immediate action is required, we will send out errata or an updated version to readers ASAP at no
cost.

Why Two Scoops of Django?

Like most people, we, the authors of this book, love ice cream. Every Saturday night we throw caution
to the wind and indulge in ice cream. Don’t tell anyone, but sometimes we even have some when it’s
not Saturday night!

Figure 1: rowing caution to the wind.

We like to try new avors and discuss their merits against our old favorites. Tracking our progress
through all these avors, and possibly building a club around it, makes for a great sample Django
project.

xxii

When we do nd a avor we really like, the new avor brings a smile to our face, just like when we
nd great tidbits of code or advice in a technical book. One of our goals for this book is to write the

kind of technical book that brings the ice cream smile to readers.

Best of all, using ice cream analogies has allowed us to come up with more vivid code examples.
We’ve had a lot of fun writing this book. You may see us go overboard with ice cream silliness here
and there; please forgive us.

Before You Begin

If you are new to Django, this book will be helpful, but large parts will be challenging
for you. To use this book to its fullest extent, you should have an understanding of the
Python programming language and have at least gone through the 5 page Django tutorial:
https://docs.djangoproject.com/en/1.5/intro/tutorial01/. Experience with object-
oriented programming is also very useful.

This Book Is Intended for Django 1.5 and Python 2.7.x

is book should work well with the Django 1.4 series, less so with Django 1.3, and so on. Even
though we make no promises about functional compatibility, at least the general approaches from
most of this book stand up over every post-1.0 version of Django.

As for the Python version, this book relies on Python 2.7.x. We hope to release an updated edition
once more of the Django community starts moving toward Python 3.3 (or higher).

None of the content in this book, including our practices, the code examples, and the libraries ref-
erenced applies to Google App Engine (GAE). If you try to use this book as a reference for GAE
development, you may run into problems.

Each Chapter Stands on Its Own

Unlike tutorial and walkthrough books where each chapter builds upon the previous chapter’s project,
we’ve written this book in a way that each chapter intentionally stands by itself.

xxiii

https://docs.djangoproject.com/en/1.5/intro/tutorial01/

Chapter 0: Introduction

We’ve done this in order to make it easy for you to reference chapters about speci c topics when
needed while you’re working on a project.

e examples in each chapter are completely independent. ey aren’t intended to be combined
into one project. Consider them useful, isolated snippets that illustrate and help with various coding
scenarios.

Conventions Used in This Book

Code blocks like the following are used throughout the book:

..

E .

class Scoop(object):
def __init__(self):

self._is_yummy = True

To keep these snippets compact, we sometimes violate the PEP 8 conventions on comments and line
spacing.

Special “Don’t Do is!” code blocks like the following indicate examples of bad code that you should
avoid:

..

B E .

DON'T DO THIS!
from rotten_ice_cream import something_bad

We use the following typographical conventions throughout the book:

ä Constant width for code fragments or commands.
ä Italic for lenames.
ä Bold when introducing a new term or important word.

Boxes containing notes, warnings, tips, and little anecdotes are also used in this book:

xxiv

.....

TIP: Something You Should Know

.
Tip boxes give handy advice.

..

WARNING: Some Dangerous Pitfall

.
Warning boxes help you avoid common mistakes and pitfalls.

.....

PACKAGE TIP: Some Useful Django Package Recommendation

.

Indicates notes about useful third-party packages related to the current chapter, and general
notes about using various Django packages.
We also provide a complete list of packages recommended throughout the book in Appendix
A: Packages Mentioned In is Book.

We also use tables to summarize information in a handy, concise way:

Daniel Greenfeld Audrey Roy

Can be fed coconut ice cream No Yes

Favorite ice cream flavors of the
moment

Birthday Cupcake, and anything with
peanut butter

Extreme Moose Tracks,
Chocolate

Authors’ Ice Cream Preferences

Core Concepts

When we build Django projects, we keep the following concepts in mind:

Keep It Simple, Stupid

Kelly Johnson, one of the most renowned and proli c aircraft design engineers in the history of
aviation, said it this way about 50 years ago. Centuries earlier, Leonardo da Vinci meant the same

xxv

Chapter 0: Introduction

thing when he said “Simplicity is the ultimate sophistication.”

When building software projects, each piece of unnecessary complexity makes it harder to add new
features and maintain old ones. Attempt the simplest solution, but take care not to implement overly
simplistic solutions that make bad assumptions.

Fat Models, Helper Modules, Thin Views, Stupid Templates

When deciding where to put a piece of code, we like to follow the “Fat Models, Helper Modules,
in Views, Stupid Templates” approach.

We recommend that you err on the side of putting more logic into anything but views and templates.
e results are pleasing. e code becomes clearer, more self-documenting, less duplicated, and a lot

more reusable.

As for template tags and lters, they should contain the minimum logic possible to function. We
cover this further in chapter 13, ‘Template Tags and Filters’.

Start With Django by Default

Before we consider switching out core Django components for things like alternative template en-
gines, different ORMs, or non-relational databases, we rst try an implementation using standard
Django components. If we run into obstacles, we explore all possibilities before replacing core Django
components.

See chapter 14, ‘Tradeoffs of Replacing Core Components’ for more details.

Stand on the Shoulders of Giants

While we take credit and responsibility for our work, we certainly did not come up with the practices
described in this book on our own.

xxvi

Without all of the talented, creative, and generous developers who make up the Django, Python, and
general open-source software communities, this book would not exist. We strongly believe in recog-
nizing the people who have served as our teachers and mentors as well as our sources for information,
and we’ve tried our best to give credit whenever credit is due.

xxvii

Chapter 0: Introduction

xxviii

1 | Coding Style

A little attention to following standard coding style guidelines will go a long way. We highly recom-
mend that you read this chapter, even though you may be tempted to skip it.

1.1 The Importance of Making Your Code Readable

Code is read more than it is written. An individual block of code takes moments to write, minutes
or hours to debug, and can last forever without being touched again. It’s when you or someone else
visits code written yesterday or ten years ago that having code written in a clear, consistent style
becomes extremely useful. Understandable code frees mental bandwidth from having to puzzle out
inconsistencies, making it easier to maintain and enhance projects of all sizes.

What this means is that you should go the extra mile to make your code as readable as possible:

ä Avoid abbreviating variable names.
ä Write out your function argument names.
ä Document your classes and methods.
ä Refactor repeated lines of code into reusable functions or methods.

When you come back to your code after time away from it, you’ll have an easier time picking up
where you left off.

Take those pesky abbreviated variable names, for example. When you see a variable called bal-
ance sheet decrease, it’s much easier to interpret in your mind than an abbreviated variable like bsd
or bal s d. ese types of shortcuts may save a few seconds of typing, but that savings comes at the
expense of hours or days of technical debt. It’s not worth it.

1

Chapter 1: Coding Style

1.2 PEP 8

PEP 8 is the official style guide for Python. We advise reading it in detail and learn to follow the
PEP 8 coding conventions: http://www.python.org/dev/peps/pep-0008/

PEP 8 describes coding conventions such as:

ä “Use 4 spaces per indentation level.”
ä “Separate top-level function and class de nitions with two blank lines.”
ä “Method de nitions inside a class are separated by a single blank line.”

All the Python les in your Django projects should follow PEP 8. If you have trouble remembering
the PEP 8 guidelines, nd a plugin for your code editor that checks your code as you type.

When an experienced Python developer sees gross violations of PEP 8 in a Django project, even if
they don’t say something mean, they are probably thinking bad things. Trust us on this one.

..

WARNING: Don't Change an Existing Project's Conventions

.

e style of PEP 8 applies to new Django projects only. If you are brought into an exist-
ing Django project that follows a different convention than PEP 8, then follow the existing
conventions.
Please read the “A Foolish Consistency is the Hobgoblin of Little Minds” section of PEP 8
for details about this and other reasons to break the rules:

ä http://2scoops.co/hobgoblin-of-little-minds

1.3 The Word on Imports

PEP 8 suggests that imports should be grouped in the following order:

..
1 Standard library imports
..
2 Related third-party imports
..
3 Local application or library speci c imports

When we’re working on a Django project, our imports look something like the following:

2

http://www.python.org/dev/peps/pep-0008/
http://2scoops.co/hobgoblin-of-little-minds

1.4: Use Explicit Relative Imports

..

E .

Stdlib imports
from math import sqrt
from os.path import abspath

Core Django imports
from django.db import models
from django.utils.translation import ugettext_lazy as _

Third-party app imports
from django_extensions.db.models import TimeStampedModel

Imports from your apps
from splits.models import BananaSplit

(Note: you don’t actually need to comment your imports like this; the comments are just here to
explain the example.)

e import order here is:
..
1 Standard library imports.
..
2 Imports from core Django.
..
3 Imports from third-party apps.
..
4 Imports from the apps that you created as part of your Django project. (You’ll read more about

apps in chapter 4, Fundamentals of App Design.)

1.4 Use Explicit Relative Imports

When writing code, it’s important to do so in such a way that it’s easier to move, rename, and version
your work. In Python, explicit relative imports remove the need for hardcoding a module’s package,
separating individual modules from being tightly coupled to the architecture around them. Since
Django apps are simply Python packages, the same rules apply.

To illustrate the bene ts of explicit relative imports, let’s explore an example.

Imagine that the following snippet is from a Django project that you created to track your ice cream
consumption, including all of the waffle/sugar/cake cones that you have ever eaten.

3

Chapter 1: Coding Style

Oh no, your cones app contains hardcoded imports, which are bad!

..

B E .

cones/views.py
from django.views.generic import CreateView

DON'T DO THIS!
Hardcoding of the 'cones' package
with implicit relative imports
from cones.models import WaffleCone
from cones.forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

Sure, your cones app works ne within your ice cream tracker project, but it has those nasty hardcoded
imports that make it less portable and reusable:

ä What if you wanted to reuse your cones app in another project that tracks your general dessert
consumption, but you had to change the name due to a naming con ict (e.g. a con ict with a
Django app for snow cones)?

ä What if you simply wanted to change the name of the app at some point?

With hardcoded imports, you can’t just change the name of the app; you have to dig through all of the
imports and change them as well. It’s not hard to change them manually, but before you dismiss the
need for explicit relative imports, keep in mind that the above example is extremely simple compared
to a real app with various additional helper modules.

Let’s now convert the bad code snippet containing hardcoded imports into a good one containing
explicit relative imports. Here’s the corrected example:

..

E .

cones/views.py
from django.views.generic import CreateView

4

1.4: Use Explicit Relative Imports

..

Relative imports of the 'cones' package
from .models import WaffleCone
from .forms import WaffleConeForm
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

To summarize, here’s a table of the different Python import types and when to use them in Django
projects:

Code Import Type Usage

from core.views import FoodMixin absolute import Use when importing from outside the
current app

from .models import WaffleCone explicit relative Use when importing from another
module in the current app

from cones.models import WaffleCone implicit relative Often used when importing from
another module in the current app,
but not a good idea

Table 1.1: Imports: Absolute vs. Explicit Relative vs. Implicit Relative

Get into the habit of using explicit relative imports. It’s very easy to do, and using explicit relative
imports is a good habit for any Python programmer to develop.

.....

TIP: Doesn't PEP 328 clash with PEP 8?

.

See what Guido Van Rossum, BDFL of Python says about it:
ä http://2scoops.co/guido-on-pep-8-vs-pep-328

Additional reading: http://www.python.org/dev/peps/pep-0328/

5

http://2scoops.co/guido-on-pep-8-vs-pep-328
http://www.python.org/dev/peps/pep-0328/

Chapter 1: Coding Style

1.5 Avoid Using Import *

In 99% of all our work, we explicitly import each module:

..

E .

from django import forms
from django.db import models

Never do the following:

..

B E .

ANTI-PATTERN: Don't do this!
from django.forms import *
from django.db.models import *

e reason for this is to avoid implicitly loading all of another Python module’s locals into and
over our current module’s namespace, which can produce unpredictable and sometimes catastrophic
results.

We do cover a speci c exception to this rule in chapter 5, Settings and Requirements Files.

For example, both the Django Forms and Django Models libraries have a class called CharField. By
implicitly loading both libraries, the Models library overwrote the Forms version of the class. is
can also happen with Python built-in libraries and other third-party libraries overwriting critical
functionality.

..

WARNING: Python Naming Collisions

.

You’ll run into similar problems if you try to import two things with the same name, such as:

..

B E .

ANTI-PATTERN: Don't do this!
from django.forms import CharField
from django.db.models import CharField

6

1.6: Django Coding Style Guidelines

Using import * is like being that greedy customer at an ice cream shop who asks for a free taster
spoon of all thirty-one avors, but who only purchases one or two scoops. Don’t import everything
if you’re only going to use one or two things.

If the customer then walked out with a giant ice cream bowl containing a scoop of every or almost
every avor, though, it would be a different matter.

Figure 1.1: Using import * in an ice cream shop.

1.6 Django Coding Style Guidelines

It goes without saying that it’s a good idea to be aware of common Django style conventions. In fact,
internally Django has its own set of style guidelines that extend PEP 8:

ä http://2scoops.co/1.5-coding-style

While the following are not speci ed in the official standards, you may want to follow them in your
projects:

ä Use underscores (the ‘ ’ character) in URL pattern names rather than dashes as this is friendlier
to more IDEs and text editors. Note that we are referring to the name argument of url() here,
not the actual URL typed into the browser. Dashes in actual URLs are ne.

ä For the same reason, use underscores rather than dashes in template block names.

7

http://2scoops.co/1.5-coding-style

Chapter 1: Coding Style

1.7 Never Code to the IDE (or Text Editor)

ere are developers who make decisions about the layout and implementation of their project based
on the features of IDEs. is can make discovery of project code extremely difficult for anyone whose
choice of development tool doesn’t match the original author.

Another way of saying “Never code to the IDE” could also be “Coding by Convention”. Always assume
that the developers around you like to use their own tools and that your code and project layout
should be transparent enough that someone stuck using NotePad or Nano will be able to navigate
your work.

For example, introspecting template tags or discovering their source can be difficult and time con-
suming for developers not using a very, very limited pool of IDEs. erefore, we follow the commonly
used naming pattern of <app name> tags.py.

1.8 Summary

is chapter covered our preferred coding style and explained why we prefer each technique.

Even if you don’t follow the coding style that we use, please follow a consistent coding style. Projects
with varying styles are much harder to maintain, slowing development and increasing the chances of
developer mistakes.

8

2 | TheOptimal Django Environment
Setup

is chapter describes what we consider the best local environment setup for intermediate and ad-
vanced developers working with Django.

2.1 Use the Same Database Engine Everywhere

A common developer pitfall is using SQLite3 for local development and PostgreSQL (or another
database besides SQLite3) in production. is section applies not only to the SQLite3/PostgreSQL
scenario, but to any scenario where you’re using two different databases and expecting them to behave
identically.

Here are some of the issues we’ve encountered with using different database engines for development
and production:

2.1.1 Fixtures Are Not a Magic Solution

You may be wondering why you can’t simply use xtures to abstract away the differences between
your local and production databases.

Well, xtures are great for creating simple hardcoded test data sets. Sometimes you need to pre-
populate your databases with fake test data during development, particularly during the early stages
of a project.

9

Chapter 2: e Optimal Django Environment Setup

Fixtures are not a reliable tool for migrating large data sets from one database to another in a database-
agnostic way, and they are not meant to be used that way. Don’t mistake the ability of xtures to create
basic data (dumpdata/loaddata) with the capability to migrate production data between database
tools.

2.1.2 You Can't Examine an Exact Copy of Production Data Locally

When your production database is different from your local development database, you can’t grab an
exact copy of your production database to examine data locally.

Sure, you can generate a SQL dump from production and import it into your local database, but that
doesn’t mean that you have an exact copy after the export and import.

2.1.3 Different Databases Have Different Field Types/Constraints

Keep in mind that different databases handle typing of eld data differently. Django’s ORM attempts
to accommodate those differences, but there’s only so much that it can do.

For example, some people use SQLite3 for local development and PostgreSQL in production, think-
ing that the Django ORM gives them the excuse not to think about the differences. Eventually they
run into problems, since SQLite3 has dynamic, weak typing instead of strong typing.

Yes, the Django ORM has features that allow your code to interact with SQLite3 in a more strongly
typed manner, but form and model validation mistakes in development will go uncaught (even in
tests) until the code goes to a production server. You may be saving long strings locally without a
hitch, for example, since SQLite3 won’t care. But then in production, your PostgreSQL or MySQL
database will throw constraint errors that you’ve never seen locally, and you’ll have a hard time repli-
cating the issues until you set up an identical database locally.

Most problems usually can’t be discovered until the project is run on a strongly typed database (e.g.
PostgreSQL or MySQL). When these types of bugs hit, you end up kicking yourself and scrambling
to set up your local development machine with the right database.

10

2.2: Use Pip and Virtualenv

.....

TIP: Django+PostgreSQL Rocks

.

Most Django developers that we know prefer to use PostgreSQL for all environments: de-
velopment, staging, QA, and production systems.

Depending on your operating system, use these instructions:

ä Mac: Download the one-click Mac installer at http://postgresapp.com
ä Windows: Download the one-click Windows installer at

http://postgresql.org/download/windows/
ä Linux: Install via your package manager, or follow the instructions at

http://postgresql.org/download/linux/

PostgreSQL may take some work to get running locally on some operating systems, but we
nd that it’s well worth the effort.

2.2 Use Pip and Virtualenv

If you are not doing so already, we strongly urge you to familiarize yourself with both pip and vir-
tualenv. ey are the de facto standard for Django projects, and most companies that use Django
rely on these tools.

Pip is a tool that fetches Python packages from the Python Package Index and its mirrors. It is used
to manage and install Python packages. It’s like easy install but has more features, the key feature
being support for virtualenv.

Virtualenv is a tool for creating isolated Python environments for maintaining package dependen-
cies. It’s great for situations where you’re working on more than one project at a time, and where
there are clashes between the version numbers of different libraries that your projects use.

11

http://postgresapp.com
http://postgresql.org/download/windows/
http://postgresql.org/download/linux/

Chapter 2: e Optimal Django Environment Setup

For example, imagine that you’re working on one project that requires Django 1.4 and another that
requires Django 1.5.

ä Without virtualenv (or an alternative tool to manage dependencies), you have to reinstall
Django every time you switch projects.

ä If that sounds tedious, keep in mind that most real Django projects have at least a dozen
dependencies to maintain.

Further reading and installation instructions can be found at:

ä pip: http://pip-installer.org
ä virtualenv: http://virtualenv.org

.....

TIP: virtualenvwrapper

.

For developers using Mac OS X or Linux, or those with advanced Windows skills
and ample patience, we also highly recommend virtualenvwrapper by Doug Hellmann:
http://virtualenvwrapper.readthedocs.org

Personally, we think virtualenv without virtualenvwrapper can be a pain to use, because every
time you want to activate a virtual environment, you have to type something long like:

..
E .

$ source ˜/.virtualenvs/twoscoops/bin/activate

With virtualenvwrapper, you’d only have to type:

..
E .

$ workon twoscoops

Virtualenvwrapper is a popular companion tool to pip and virtualenv and makes our lives
easier, but it’s not an absolute necessity.

12

http://pip-installer.org
http://virtualenv.org
http://virtualenvwrapper.readthedocs.org

2.3: Install Django and Other Dependencies via Pip

Figure 2.1: Pip, virtualenv, and virtualenvwrapper in ice cream bar form.

2.3 Install Django and Other Dependencies via Pip

e official Django documentation describes several ways of installing Django. Our recommended
installation method is with pip and requirements les.

To summarize how this works: a requirements le is like a grocery list of Python packages that you
want to install. It contains the name and desired version of each package. You use pip to install
packages from this list into your virtual environment.

We cover the setup of and installation from requirements les in chapter 5, ‘Settings and Require-
ments Files’.

13

Chapter 2: e Optimal Django Environment Setup

.....

TIP: Setting PYTHONPATH

.

If you have a rm grasp of the command line and environment variables, you can set your
virtualenv PYTHONPATH so that the django-admin.py command can be used to serve your site
and perform other tasks. If you don’t know how to set this, don’t worry about it and stick with
manage.py. Additional reading:

ä http://cs.simons-rock.edu/python/pythonpath.html
ä https://docs.djangoproject.com/en/1.5/ref/django-admin/

2.4 Use a Version Control System

Version control systems are also known as revision control or source control. Whenever you work on
any Django project, you should use a version control system to keep track of your code changes.

Wikipedia has a detailed comparison of different version control systems:

ä http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

Of all the options, Git and Mercurial seem to be the most popular among Django developers. Both
Git and Mercurial make it easy to create branches and merge changes.

When using a version control system, it’s important to not only have a local copy of your code reposi-
tory, but also to use a code hosting service for backups. For this, we recommend that you use GitHub
(https://github.com/) or Bitbucket (https://bitbucket.org/).

2.5 Summary

is chapter covered using the same database in development as in production, pip, virtualenv, and
version control systems. ese are good to have in your tool chest, since they are commonly used not
just in Django, but in the majority of Python software development.

14

http://cs.simons-rock.edu/python/pythonpath.html
https://docs.djangoproject.com/en/1.5/ref/django-admin/
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
https://github.com/
https://bitbucket.org/

3 | How to Lay Out Django Projects

Project layout is one of those areas where core Django developers have differing opinions about
what they consider best practice. In this chapter, we present our approach, which is one of the most
commonly-used ones.

3.1 Django 1.5's Default Project Layout

Let’s examine the default project layout that gets created when you run startproject and startapp:

..

E .

$ django-admin.py startproject mysite
$ cd mysite
$ django-admin.py startapp my_app

Here’s the resulting project layout:

..

E .

mysite/
manage.py
my_app/

__init__.py
models.py
tests.py
views.py

mysite/
__init__.py

15

Chapter 3: How to Lay Out Django Projects

..
settings.py
urls.py
wsgi.py

3.2 Our Preferred Project Layout

We rely on a three-tiered approach that builds on what is generated by the django-admin.py
startproject management command. We place that inside another directory which serves as the
git repository root. Our layouts at the highest level are:

..

E .

<repository_root>/
<django_project_root>/

<configuration_root>/

Let’s go over each level in detail:

3.2.1 Top Level: Repository Root

e top-level <repository root>/ directory is the absolute root directory of the project. In addition to
the <django project root> we also place other critical components like the README.rst, docs/ direc-
tory, design/ directory, .gitignore, requirements.txt les, and other high-level les that are required
for deployment.

3.2.2 Second Level: Django Project Root

Generated by the django-admin.py startproject command, this is what is traditionally con-
sidered the Django project root.

is directory contains the <con guration root>, media and static directories, a site-wide templates
directory, as well as Django apps speci c to your particular project.

16

3.3: Sample Project Layout

.....

TIP: Common Practice Varies Here

.
Some developers like to make the <django project root> the <repository root> of the project.

3.2.3 Third Level: Configuration Root

Also generated by the django-admin.py startproject command, the <con guration root> di-
rectory is where the settings module and base URLConf (urls.py) are placed. is must be a valid
Python package (containing an init .py module).

Figure 3.1: ree-tiered scoop layout.

3.3 Sample Project Layout

Let’s take a common example: a simple rating site. Imagine that we are creating Ice Cream Ratings,
a web application for rating different brands and avors of ice cream.

is is how we would lay out such a project:

17

Chapter 3: How to Lay Out Django Projects

..

E .

icecreamratings_project/
.gitignore
Makefile
docs/
README.rst
requirements.txt
icecreamratings/

manage.py
media/
products/
profiles/
ratings/
static/
templates/
icecreamratings/

__init__.py
settings/
urls.py
wsgi.py

Let’s do an in-depth review of this layout. As you can see, in the icecreamratings project/ directory,
which is the <repository root> , we have the following les and directories. We describe them in the
table below:

File or Directory Purpose

.gitignore
Lists the files and directories that Git should ignore. (This file is different for other
version control systems. For example, if you are using Mercurial instead, you'd have
an .hgignore file.)

README.rst and docs/
Developer-facing project documentation. You'll read more about this in chapter 19,
Documentation.

Makefile
Contains simple deployment tasks and macros. For more complex deployments you
may want to rely on tools like Fabric.

18

http://fabfile.org

3.3: Sample Project Layout

File or Directory Purpose

requirements.txt
A list of Python packages required by your project, including the Django 1.5 package.
You'll read more about this in chapter 17, Django's Secret Sauce: Third-Party
Packages.

icecreamratings/ The <django project root> of the project.

Table 3.1: Repository Root Files and Directories

When anyone visits this project, they are provided with a high-level view of the project. We’ve found
that this allows us to work easily with other developers and even non-developers. For example, it’s
not uncommon for designer-focused directories to be created in the root directory.

Many developers like to make this at the same level as our <repository root>, and that’s perfectly
alright with us. We just like to see our projects a little more separated.

Inside the icecreamratings project/icecreamratings directory, at the <django project root>, we place the
following les/directories:

File or Directory Purpose

manage.py
If you leave this in, don't modify its contents. Refer to chapter 5, Settings and
Requirements Files for more details.

media/
User-generated static media assets such as photos uploaded by users. For larger
projects, this will be hosted on separate static media server(s).

products/ App for managing and displaying ice cream brands.

profiles/ App for managing and displaying user profiles.

ratings/ App for managing user ratings.

static/
Non-user-generated static media assets including CSS, JavaScript, and images. For
larger projects, this will be hosted on separate static media server(s).

templates/ Where you put your site-wide Django templates.

icecreamratings/
The <configuration root> of the project, where project-wide settings, urls.py, and
wsgi.py modules are placed (We'll cover settings layout later in chapter 5, Settings
and Requirements Files).

19

Chapter 3: How to Lay Out Django Projects

File or Directory Purpose

Table 3.2: Django Project Files and Directories

.....

TIP: Conventions For Static Media Directory Names

.

In the example above, we follow the official Django documentation’s convention of using
static/ for the (non-user-generated) static media directory.

If you nd this confusing, there’s no harm in calling it assets/ or site assets/ instead. Just
remember to update your STATICFILES DIRS setting appropriately.

3.4 What About the Virtualenv?

Notice how there is no virtualenv directory anywhere in the project directory or its subdirectories?
at is completely intentional.

A good place to create the virtualenv for this project would be a separate directory where you keep
all of your virtualenvs for all of your Python projects. We like to put all our environments in one
directory and all our projects in another.

On Mac OS X or Linux:

..

E .

˜/projects/icecreamratings_project/
˜/.envs/icecreamratings/

On Windows:

..

E .

c:\projects\icecreamratings_project\
c:\envs\icecreamratings\

20

3.5: Using a Startproject Template to Generate Our Layout

If you’re using virtualenvwrapper (only for Mac OS X or Linux), that directory defaults to
˜/.virtualenvs/ and the virtualenv would be located at:

..
E .

˜/.virtualenvs/icecreamratings/

.....

TIP: Listing Current Dependencies

.

If you have trouble determining which versions of dependencies you are using in your vir-
tualenv, at the command-line you can list your dependencies by typing:

..
E .

$ pip freeze --local

Also, remember, there’s no need to keep the contents of your virtualenv in version control since it
already has all the dependencies captured in requirements.txt, and since you won’t be editing any of
the source code les in your virtualenv directly. Just remember that requirements.txt does need to
remain in version control!

3.5 Using a Startproject Template to GenerateOur Lay-
out

Want to use our layout with a minimum of fuss? If you have Django 1.5 (or even Django 1.4), you
can use the startproject command as follows, all on one line:

..

E .

$ django-admin.py startproject --template=https://github.com/
twoscoops/django-twoscoops-project/zipball/master
--extension=py,rst,html icecreamratings_project

is will create an icecreamratings project where you run the command, and this follows the layout
example we provided. It also builds settings, requirements, and templates in the same pattern as those
items are described later in the book.

21

Chapter 3: How to Lay Out Django Projects

3.6 Other Alternatives

As we mentioned, there’s no one right way when it comes to project layout. It’s okay if a project differs
from our layout, just so long as things are either done in a hierarchical fashion or the locations of
elements of the project (docs, templates, apps, settings, etc) are documented in the root README.rst
.

Figure 3.2: Project layout differences of opinion can cause ice cream ghts.

3.7 Summary

In this chapter, we covered our approach to basic Django project layout. We provided a detailed
example to give you as much insight as possible into our practices.

Project layout is one of those areas of Django where practices differ widely from developer to devel-
oper and group to group. What works for a small team may not work for a large team with distributed
resources. Whatever layout is chosen should be documented clearly.

22

4 | Fundamentals of Django App De-
sign

It’s not uncommon for new Django developers to become understandably confused by Django’s usage
of the word “app.” So before we get into Django app design, it’s very important that we go over some
de nitions.

A Django project is a web application powered by the Django web framework.
Django apps are small libraries designed to represent a single aspect of a project. A Django project

is made up of many Django apps. Some of those apps are internal to the project and will never
be reused; others are third-party Django packages.

ird-party Django packages are simply pluggable, reusable Django apps that have been packaged
with the Python packaging tools. We’ll begin coverage of them in chapter 17, Django’s Secret
Sauce: ird-Party Packages.

4.1 The Golden Rule of Django App Design

James Bennett serves as both a Django core developer and its release manager. He taught us every-
thing we know about good Django app design. We quote him:

“ e art of creating and maintaining a good Django app is that it should follow the
truncated Unix philosophy according to Douglas McIlroy: ‘Write programs that do one
thing and do it well.”’

In essence, each app should be tightly focused on its task. If an app can’t be explained in a single
sentence of moderate length, or you need to say ‘and’ more than once, it probably means the app is
too big and should be broken up.

23

Chapter 4: Fundamentals of Django App Design

4.1.1 A Practical Example of Apps in a Project

Imagine that we’re creating a web application for our ctional ice cream shop called “Two Scoops.”
Picture us getting ready to open the shop: polishing the countertops, making the rst batches of ice
cream, and building the website for our shop.

We’d call the Django project for our shop’s website twoscoops project. e apps within our Django
project might be something like:

ä A avors app to track all of our ice cream avors and list them on our website.
ä A blog app for the official Two Scoops blog.
ä An events app to display listings of our shop’s events on our website: events such as Strawberry

Sundae Sundays and Fudgy First Fridays.

Each one of these apps does one particular thing. Yes, the apps relate to each other, and you could
imagine events or blog posts that are centered around certain ice cream avors, but it’s much better
to have three specialized apps than one app that does everything.

In the future, we might extend the site with apps like:

ä A shop app to allow us to sell pints by mail order.
ä A tickets app, which would handle ticket sales for premium all-you-can-eat ice cream fests.

Notice how events are kept separate from ticket sales. Rather than expanding the events app to sell
tickets, we create a separate tickets app because most events don’t require tickets, and because event
calendars and ticket sales have the potential to contain complex logic as the site grows.

Eventually, we hope to use the tickets app to sell tickets to Icecreamlandia, the ice cream theme park
lled with thrill rides that we’ve always wanted to open.

Did we say that this was a ctional example? Ahem...well, here’s an early concept map of what we
envision for Icecreamlandia:

24

4.2: What to Name Your Django Apps

Figure 4.1: Our vision for Icecreamlandia.

4.2 What to Name Your Django Apps

Everyone has their own conventions, and some people like to use really colorful names. We like to
use naming systems that are dull, boring, and obvious. In fact, we advocate doing the following:

When possible keep to single word names like avors, animals, blog, polls, dreams, estimates, and
nances. A good, obvious app name makes the project easier to maintain.

As a general rule, the app’s name should be a plural version of the app’s main model, but there are
many good exceptions to this rule, blog being one of the most common ones.

Don’t just consider the app’s main model, though. You should also consider how you want
your URLs to appear when choosing a name. If you want your site’s blog to appear at
http://www.example.com/weblog/, then consider naming your app weblog rather than blog,
posts, or blogposts, even if the main model is Post, to make it easier for you to see which app corre-
sponds with which part of the site.

Use valid, PEP 8-compliant, importable Python package names: short, all-lowercase names with-
out numbers, dashes, periods, spaces, or special characters. If needed for readability, you can use
underscores to separate words, although the use of underscores is discouraged.

25

http://www.example.com/weblog/

Chapter 4: Fundamentals of Django App Design

4.3 When in Doubt, Keep Apps Small

Don’t worry too hard about getting app design perfect. It’s an art, not a science. Sometimes you have
to rewrite them or break them up. at’s okay.

Try and keep your apps small. Remember, it’s better to have many small apps than to have a few
giant apps.

4.4 Summary

is chapter covered the art of Django app design. Speci cally, each Django app should be tightly-
focused on its own task, possess a simple, easy-to-remember name. If an app seems too complex,
it should be broken up into smaller apps. Getting app design takes practice and effort, but it’s well
worth the effort.

26

5 | Settings and Requirements Files

Django 1.5 has over 130 settings that can be controlled in the settings module, most of which come
with default values. Settings are loaded when your server starts up, and experienced Django devel-
opers stay away from trying to change settings in production since they require a server restart.

Some best practices we like to follow:

ä All settings les need to be version-controlled. is is especially true in production environ-
ments, where dates, times, and explanations for settings changes absolutely must be tracked.

ä Don’t Repeat Yourself. You should inherit from a base settings le rather than cutting-and-
pasting from one le to another.

ä Keep secret keys safe. ey should be kept out of version control.

Figure 5.1: Over 130 settings are available to you in Django 1.5.

27

Chapter 5: Settings and Requirements Files

5.1 Avoid Non-Versioned Local Settings

We used to advocate the non-versioned local settings anti-pattern. Now we know better.

As developers, we have our own necessary settings for development, such as settings for debug tools
which should be disabled (and often not installed to) staging or production servers.

Furthermore, there are often good reasons to keep speci c settings out of public or private code
repositories. e SECRET KEY setting is the rst thing that comes to mind, but API key settings to
services like Amazon, Stripe, and other password-type variables need to be protected.

..

WARNING: Protect Your Secrets!

.

e SECRET KEY setting is used in Django’s cryptographic signing functionality, and
needs to be set to a unique, unpredictable setting best kept out of version con-
trol. Running Django with a known SECRET KEY defeats many of Django’s security
protections, which can lead to serious security vulnerabilities. For more details, read
https://docs.djangoproject.com/en/1.5/topics/signing/.

e same warning for SECRET KEY also applies to production database passwords, AWS
keys, OAuth tokens, or any other sensitive data that your project needs in order to operate.

We’ll show how to handle the SECRET KEY issue in the “Keep Secret Keys Out With Envi-
ronment Settings” section.

A common solution is to create local settings.py modules that are created locally per server or develop-
ment machine, and are purposefully kept out of version control. Developers now make development-
speci c settings changes, including the incorporation of business logic without the code being tracked
in version control. Staging and deployment servers can have location speci c settings and logic with-
out them being tracked in version control.

What could possibly go wrong?!?

Ahem...

ä Every machine has untracked code.
ä How much hair will you pull out, when after hours of failing to duplicate a production bug

locally, you discover that the problem was custom logic in a production-only setting?

28

https://docs.djangoproject.com/en/1.5/topics/signing/

5.2: Using Multiple Settings Files

ä How fast will you run from everyone when the ‘bug’ you discovered locally, xed and pushed
to production was actually caused by customizations you made in your own local settings.py
module and is now crashing the site?

ä Everyone copy/pastes the same local settings.py module everywhere. Isn’t this a violation of
Don’t Repeat Yourself but on a larger scale?

Let’s take a different approach. Let’s break up development, staging, test, and production settings
into separate components that inherit from a common base le all tracked by version control. We’ll
make sure we do it in such a way that server secrets will remain secret.

Read on and see how it’s done!

5.2 Using Multiple Settings Files

.....

TIP: This is Adapted From ``The One True Way''

.

e setup described here is based on “ e One True Way”, from Ja-
cob Kaplan-Moss’ e Best (and Worst) of Django talk at OSCON 2011
(www.slideshare.net/jacobian/the-best-and-worst-of-django).

Instead of having one settings.py le, with this setup you have a settings/ directory containing your
settings les. is directory will typically contain something like the following:

..

E .

settings/
__init__.py
base.py
local.py
staging.py
test.py
production.py

29

http://www.slideshare.net/jacobian/the-best-and-worst-of-django

Chapter 5: Settings and Requirements Files

..

WARNING: Requirements + Settings

.

Each settings module should have its own corresponding requirements le. We’ll cover this
at the end of this chapter in section 5.5, ‘Using Multiple Requirements Files.’

Settings file Purpose

base.py Settings common to all instances of the project.

local.py

This is the settings file that you use when you're working on the project locally. Local
development-specific settings include DEBUG mode, log level, and activation of developer
tools like django-debug-toolbar. Developers sometimes name this file dev.py.

staging.py
Staging version for running a semi-private version of the site on a production server. This is
where managers and clients should be looking before your work is moved to production.

test.py
Settings for running tests including test runners, in-memory database definitions, and log
settings.

production.py

This is the settings file used by your live production server(s). That is, the server(s) that host
the real live website. This file contains production-level settings only. It is sometimes called
prod.py.

Table 5.1: Settings les and their purpose

.....

TIP: Multiple Files with Continuous Integration Servers

.

You’ll also want to have a ci.py module containing that server’s settings. Similarly, if it’s a large
project and you have other special-purpose servers, you might have custom settings les for
each of them.

Let’s take a look at how to use the shell and runserver management commands with this setup.
You’ll have to use the --settings command line option, so you’ll be entering the following at the
command-line.

To start the Python interactive interpreter with Django, using your settings/local.py settings le:

30

5.2: Using Multiple Settings Files

..
E .

python manage.py shell --settings=twoscoops.settings.local

To run the local development server with your settings/local.py settings le:

..
E .

python manage.py runserver --settings=twoscoops.settings.local

.....

TIP: DJANGO SETTINGS MODULE

.

A great alternative to using the --settings command line option everywhere is to set
the DJANGO SETTINGS MODULE environment variable to your desired settings module path.
You’d have to set DJANGO SETTINGS MODULE to the corresponding settings module for each
environment, of course.

For the settings setup that we just described, here are the values to use with the --settings com-
mand line option or the DJANGO SETTINGS MODULE environment variable:

Environment
Option To Use With --settings (or
DJANGO SETTINGS MODULE value)

Your local development server twoscoops.settings.local

Your staging server twoscoops.settings.staging

Your test server twoscoops.settings.test

Your production server twoscoops.settings.production

Table 5.2: Setting DJANGO SETTINGS MODULE per location

31

Chapter 5: Settings and Requirements Files

.....

TIP: Using django-admin.py instead of manage.py

.

e official Django documentation says that you should use django-
admin.py rather than manage.py when working with multiple settings les:
https://docs.djangoproject.com/en/1.5/ref/django-admin/

at being said, if you’re struggling with django-admin.py, it’s perfectly okay to develop and
launch your site running it with manage.py.

5.2.1 A Development Settings Example

As mentioned earlier, we need settings con gured for development, such as setting the email host
to localhost, setting the project to run in DEBUG mode, and setting other con guration options that
are used solely for development purposes. We place development settings like the following into
settings/local.py :

..

E .

settings/local.py
from .base import *

DEBUG = True
TEMPLATE_DEBUG = DEBUG

EMAIL_HOST = "localhost"
EMAIL_PORT = 1025

DATABASES = {
"default": {

"ENGINE": "django.db.backends.postgresql_psycopg2",
"NAME": "twoscoops",
"USER": "",
"PASSWORD": "",
"HOST": "localhost",
"PORT": "",

}

32

https://docs.djangoproject.com/en/1.5/ref/django-admin/

5.2: Using Multiple Settings Files

..

}

INSTALLED_APPS += ("debug_toolbar",)
INTERNAL_IPS = ("127.0.0.1",)
MIDDLEWARE_CLASSES += \

("debug_toolbar.middleware.DebugToolbarMiddleware",)

Now try it out at the command line with:

..
E .

python manage.py runserver --settings=twoscoops.settings.local

Open http://127.0.0.1:8000 and enjoy your development settings, ready to go into version
control! You and other developers will be sharing the same development settings les, which for
shared projects, is awesome.

Yet there’s another advantage: No more ‘if DEBUG’ or ‘if not DEBUG’ logic to copy/paste around
between projects. Settings just got a whole lot simpler!

At this point we want to take a moment to note that Django settings les are the single, solitary
place we advocate using import *. e reason is that for the singular case of Django setting modules
we want to override all the namespaces.

5.2.2 Multiple Development Settings

Sometimes we’re working on a large project where different developers need different settings, and
sharing the same dev.py settings le with teammates won’t do.

Well, it’s still better tracking these settings in version control than relying on everyone customizing
the same dev.py module to their own tastes. A nice way to do this is with multiple dev settings les,
e.g. dev audreyr.py and dev pydanny.py:

33

http://127.0.0.1:8000

Chapter 5: Settings and Requirements Files

..

E .

settings/dev_pydanny.py
from .local import *

Set short cache timeout
CACHE_TIMEOUT = 30

Why? It’s not only good to keep all your own settings les in version control, but it’s also good to be
able to see your teammates’ dev settings les. at way, you can tell if someone’s missing a vital or
helpful setting in their local development setup, and you can make sure that everyone’s local settings
les are synchronized. Here is what our projects frequently use for settings layout:

..

E .

settings/
__init__.py
base.py
dev_audreyr.py
dev_pydanny.py
local.py
staging.py
test.py
production.py

5.3 Keep Secret Keys Out With Environment Variables

One of the causes of the local settings anti-pattern is that putting SECRET KEY, AWS keys, API
keys, or server-speci c values into settings les has problems:

ä Secrets often should be just that: secret! Keeping them in version control means that everyone
with repository access has access to them.

ä Secret keys are con guration values, not code.
ä Platforms-as-a-service usually don’t give you the ability to edit code on individual servers. Even

if they allow it, it’s a terribly dangerous practice.

To resolve this, our answer is to use environment variables.

34

5.3: Keep Secret Keys Out With Environment Variables

Every operating system supported by Django (and Python) provides the easy capability to create
environment variables.

Here are the bene ts of using environment variables for secret keys:

ä Keeping secrets out of settings allows you to store every settings le in version control without
hesitation. All of your Python code really should be stored in version control, including your
settings.

ä Instead of each developer maintaining an easily-outdated, copy-and-pasted version of the
local settings.py.example le for their own development purposes, everyone shares the same
version-controlled settings/local.py .

ä System administrators can rapidly deploy the project without having to modify les containing
Python code.

ä Most platforms-as-a-service recommend the use of environment variables for con guration
and have built-in features for setting and managing them.

5.3.1 A Caution Before Using Environment Variables for Secrets

Before you begin setting environment variables, you should have the following:

ä A way to manage the secret information you are going to store.
ä A good understanding of how bash settings work on servers, or a willingness to have your

project hosted by a platform-as-a-service.

For more information, see http://2scoops.co/wikipedia-env-variable.

5.3.2 How to Set Environment Variables Locally

On Mac and many Linux distributions that use bash for the shell, one can add lines like the following
to the end of a .bashrc, .bash pro le, or .pro le. When dealing with multiple projects using the same
API but with different keys, you can also place these at the end of your virtualenv’s bin/activate script:

..

E .

$ export SOME_SECRET_KEY=1c3-cr3am-15-yummy
$ export AUDREY_FREEZER_KEY=y34h-r1ght-d0nt-t0uch-my-1c3-cr34m

35

http://2scoops.co/wikipedia-env-variable

Chapter 5: Settings and Requirements Files

On Windows systems, it’s a bit trickier. You can set them one-by-one at the command line (cmd.exe)
in a persistent way with the setx command, but you’ll have to close and reopen your command prompt
for them to go into effect. A better way is to place these commands at the end of the virtualenv’s
bin/activate.bat script so they are available upon activation:

..
E .

> setx SOME_SECRET_KEY 1c3-cr3am-15-yummy

PowerShell is much more powerful than the default Windows shell and comes with Windows Vista
and above. Setting environment variables while using PowerShell:

For the current User only:

..

E .

[Environment]::SetEnvironmentVariable("SOME_SECRET_KEY",
"1c3-cr3am-15-yummy", "User")

[Environment]::SetEnvironmentVariable("AUDREY_FREEZER_KEY",
"y34h-r1ght-d0nt-t0uch-my-1c3-cr34m", "User")

Machine wide:

..

E .

[Environment]::SetEnvironmentVariable("SOME_SECRET_KEY",
"1c3-cr3am-15-yummy", "Machine")

[Environment]::SetEnvironmentVariable("AUDREY_FREEZER_KEY",
"y34h-r1ght-d0nt-t0uch-my-1c3-cr34m", "Machine")

For more information on Powershell, see http://2scoops.co/powershell

.....

TIP: virtualenvwrapper Makes This Easier

.

Mentioned earlier in this book, virtualenvwrapper, simpli es per-virtualenv environment
variables. It’s a great tool. Of course, it requires an understanding of the shell and either Mac
OS X or Linux.

36

http://2scoops.co/powershell

5.4: How to Set Environment Variables in Production

5.4 How to Set Environment Variables in Production

If you’re using your own servers, your exact practices will differ depending on the tools you’re using
and the complexity of your setup. For the simplest 1-server setup, it’s just a matter of appending to
your .bashrc le as described above. But if you’re using scripts or tools for automated server provi-
sioning and deployment, your approach may be more complex. Check the documentation for your
deployment tools for more information.

If your Django project is deployed via a platform-as-a-service, check the documentation for speci c
instructions. We’ve included Gondor.io, Heroku, and dotCloud instructions here so that you can see
that it’s similar for different platform-as-a-service options.

On Gondor.io, you set environment variables with the following command, executed from your
development machine:

..
E .

$ gondor env:set SOME_SECRET_KEY=1c3-cr3am-15-yummy

On Heroku, you set environment variables with the following command, executed from your devel-
opment machine:

..
E .

$ heroku config:add SOME_SECRET_KEY=1c3-cr3am-15-yummy

On dotCloud, you set environment variables with the following command, executed from your
development machine:

..
E .

$ dotcloud env set SOME_SECRET_KEY=1c3-cr3am-15-yummy

To see how you access environment variables from the Python side, open up a new Python prompt
and type:

37

http://gondor.io
http://heroku.com
http://dotcloud.com

Chapter 5: Settings and Requirements Files

..

E .

>>> import os
>>> os.environ["SOME_SECRET_KEY"]
"1c3-cr3am-15-yummy"

To access environment variables from one of your settings les, you can do something like this:

..

E .

Top of settings/production.py
import os
SOME_SECRET_KEY = os.environ["SOME_SECRET_KEY"]

is snippet simply gets the value of the SOME SECRET KEY environment variable from the operating
system and saves it to a Python variable called SOME SECRET KEY.

Following this pattern means all code can remain in version control, and all secrets remain safe.

5.4.1 Handling Missing Secret Key Exceptions

In the above implementation, if the SECRET KEY isn’t available, it will throw a KeyError, making it
impossible to start the project. at’s great, but a KeyError doesn’t tell you that much about what’s
actually wrong. Without a more helpful error message, this can be hard to debug, especially under
the pressure of deploying to servers while users are waiting and your ice cream is melting.

Here’s a useful code snippet that makes it easier to troubleshoot those missing environment variables.
If you’re using our recommended environment variable secrets approach, you’ll want to add this to
your settings/base.py le:

..

E .

settings/base.py
import os

Normally you should not import ANYTHING from Django directly

38

5.4: How to Set Environment Variables in Production

..

into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

def get_env_variable(var_name):
""" Get the environment variable or return exception """
try:

return os.environ[var_name]
except KeyError:

error_msg = "Set the %s environment variable" % var_name
raise ImproperlyConfigured(error_msg)

en, in any of your settings les, you can load secret keys from environment variables as follows:

..
E .

SOME_SECRET_KEY = get_env_variable("SOME_SECRET_KEY")

Now, if you don’t have SOME SECRET KEY set as an environment variable, you get a traceback that
ends with a useful error message like this:

..

E .

django.core.exceptions.ImproperlyConfigured: Set the SOME_SECRET_KEY
environment variable.

..

WARNING: Don't Import Django Components Into Settings
Modules

.

is can have many unpredictable side effects, so avoid any sort of import of Django compo-
nents into your settings. ImproperlyConfigured is the exception because it’s the official
Django exception for...well...improperly con gured projects. And just to be helpful we add
the name of the problem setting to the error message.

39

Chapter 5: Settings and Requirements Files

5.5 Using Multiple Requirements Files

Finally, there’s one more thing you need to know about the multiple settings les setup. It’s good
practice for each settings le to have its own corresponding requirements le. is means we’re only
installing what is required on each server.

To follow this pattern, recommended to us by Jeff Triplett, rst create a requirements/ directory in
the <repository root>. en create ‘.txt’ les that match the contents of your settings directory. e
results should look something like:

..

E .

requirements/
base.txt
local.txt
staging.txt
production.txt

In the base.txt le, place the dependencies used in all environments. For example, you might have
something like the following in there:

..

E .

Django==1.5.1
psycopg2==2.4.5
South==0.7.6

Your local.txt le should have dependencies used for local development, such as:

..

E .

-r base.txt # includes the base.txt requirements file

coverage==3.6
django-discover-runner==0.2.2
django-debug-toolbar==0.9.4

e needs of a continuous integration server might prompt the following for a ci.txt le:

40

5.5: Using Multiple Requirements Files

..

E .

-r base.txt # includes the base.txt requirements file

coverage==3.6
django-discover-runner==0.2.2
django-jenkins==0.13.0

Production installations should be close to what is used in other locations, so production.txt com-
monly just calls base.txt:

..
E .

-r base.txt # includes the base.txt requirements file

5.5.1 Installing From Multiple Requirements Files

For local development:

..
E .

$ pip install -r requirements/local.txt

For production:

..
E .

$ pip install -r requirements/production.txt

41

Chapter 5: Settings and Requirements Files

.....

TIP: Don't Know What Dependencies You Installed?

.

You can use pip to output a list of packages that are currently installed in your Python envi-
ronment. From the command-line, type:

..
E .

$ pip freeze --local

5.5.2 Using Multiple Requirements Files With Platforms as a Ser-
vice (PaaS)

See section 25.2, ‘Using a Platform as a Service’, in chapter 25, Deploying Django Projects.

5.6 Handling File Paths in Settings

If you switch to the multiple settings setup and get new lepath errors to things like templates and
media, don’t be alarmed. is section will help you resolve these errors.

We humbly beseech the reader to never hardcode le paths in Django settings les. is is really bad:

..

B E .

settings/base.py

Configuring MEDIA_ROOT
’DONT DO THIS! Hardcoded to just one user's preferences
MEDIA_ROOT = "˜/pydanny/twoscoops_project/media"

Configuring STATIC_ROOT
’DONT DO THIS! Hardcoded to just one user's preferences
STATIC_ROOT = "˜/pydanny/twoscoops_project/collected_static"

Configuring TEMPLATE_DIRS
’DONT DO THIS! Hardcoded to just one user's preferences

42

5.6: Handling File Paths in Settings

..
TEMPLATE_DIRS = (

"˜/pydanny/twoscoops_project/templates",
)

e above code represents a common pitfall called hardcoding. e above code, called a xed path,
is bad because as far as you know, pydanny (Daniel Greenfeld) is the only person who has set up their
computer to match this path structure. Anyone else trying to use this example will see their project
break, forcing them to either change their directory structure (unlikely) or change the settings module
to match their preference (causing problems for everyone else including pydanny).

Don’t hardcode your paths!

To x the path issue, we dynamically set a project root variable intuitively named PROJECT ROOT at
the top of the base settings module. Since PROJECT ROOT is determined in relation to the location
of base.py, your project can be run from any location on any development computer or server.

We nd the cleanest way to set a PROJECT ROOT-like setting is with Unipath
(http://pypi.python.org/pypi/Unipath/), a Python package that does elegant, clean
path calculations:

..

E .

At the top of settings/base.py
from unipath import Path

PROJECT_DIR = Path(__file__).ancestor(3)
MEDIA_ROOT = PROJECT_DIR.child("media")
STATIC_ROOT = PROJECT_DIR.child("static")
STATICFILES_DIRS = (

PROJECT_DIR.child("assets"),
)
TEMPLATE_DIRS = (

PROJECT_DIR.child("templates"),
)

If you really want to set your PROJECT ROOT with the Python standard library’s os.path library,

43

http://pypi.python.org/pypi/Unipath/

Chapter 5: Settings and Requirements Files

though, this is one way to do it in a way that will account for paths:

..

E .

At the top of settings/base.py
from os.path import join, abspath, dirname

here = lambda *x: join(abspath(dirname(__file__)), *x)
PROJECT_ROOT = here("..", "..")
root = lambda *x: join(abspath(PROJECT_ROOT), *x)

Configuring MEDIA_ROOT
MEDIA_ROOT = root("media")

Configuring STATIC_ROOT
STATIC_ROOT = root("collected_static")

Additional locations of static files
STATICFILES_DIRS = (

root("assets"),
)

Configuring TEMPLATE_DIRS
TEMPLATE_DIRS = (

root("templates"),
)

With your various path settings dependent on PROJECT ROOT, your lepath settings should work,
which means your templates and media should be loading without error.

.....

TIP: How different are your settings from the Django defaults?

.

If you want to know how things in your project differ from Django’s defaults, use the
diffsettings management command.

44

5.7: Summary

5.7 Summary

Remember, everything except for critical security related values ought to be tracked in version control.

Any project that’s destined for a real live production server is bound to need multiple settings and
requirements les. Even beginners to Django need this kind of settings/requirements le setup once
their projects are ready to leave the original development machine. We provide our solution since it
works well for both beginning and advanced developers.

e same thing applies to requirements les. Working with untracked dependency differences in-
creases risk as much as untracked settings.

45

Chapter 5: Settings and Requirements Files

46

6 | Database/Model Best Practices

Models are the foundation of most Django projects. Racing to write Django models without thinking
things through can lead to problems down the road.

All too frequently we developers rush into adding or modifying models without considering the
rami cations of what we are doing. e quick x or sloppy “temporary” design decision that we toss
into our code base now can hurt us in the months or years to come, forcing crazy workarounds or
corrupting existing data.

So keep this in mind when adding new models in Django or modifying existing ones. Take your time
to think things through, and design your foundation to be as strong and sound as possible.

.....

PACKAGE TIP: Our Picks For Working With Models

.

Here’s a quick list of the model-related Django packages that we use in practically every
project.

ä South for database migrations. South is so commonplace these days that using it has
become a de facto best practice. We’ll cover tips for working with South later in this
chapter.

ä django-model-utils to handle common patterns like TimeStampedModel.
ä django-extensions has a powerful management command called ‘shell plus’ which au-

toloads the model classes for all installed apps. e downside of this library is that it
includes a lot of other functionality which breaks from our preference for small, focused
apps.

47

Chapter 6: Database/Model Best Practices

6.1 Basics

6.1.1 Break Up Apps With Too Many Models

If there are 20+ models in a single app, think about ways to break it down into smaller apps, as it
probably means your app is doing too much. In practice, we like to lower this number to no more
than ve models per app.

6.1.2 Don't Drop Down to Raw SQL Until It's Necessary

Most of the queries we write are simple. e Object-Relational Model or ‘ORM’ provides a great
productivity shortcut: writing decent SQL that comes complete with validation and security. If you
can write your query easily with the ORM, then take advantage of it!

It’s also good to keep in mind that if you ever release one of your Django apps as a third-party package,
using raw SQL will decrease the portability of the work.

Finally, in the rare event that the data has to be migrated from one database to another, any database-
speci c features that you use in your SQL queries will complicate the migration.

So when should you actually write raw SQL? If expressing your query as raw SQL would drastically
simplify your Python code or the SQL generated by the ORM, then go ahead and do it. For example,
if you’re chaining a number of QuerySet operations that each operate on a large data set, there may
be a more efficient way to write it as raw SQL.

.....

TIP: Malcolm Tredinnick's Advice On Writing SQL in Django

.

Django core developer Malcolm Tredinnick said (paraphrased):
“ e ORM can do many wonderful things, but sometimes SQL is the right
answer. e rough policy for the Django ORM is that it’s a storage layer that
happens to use SQL to implement functionality. If you need to write advanced
SQL you should write it. I would balance that by cautioning against overuse of
the raw() and extra() methods.”

48

6.1: Basics

.....

TIP: Jacob Kaplan-Moss' Advice On Writing SQL in Django

.

Django project co-leader Jacob Kaplan-Moss says (paraphrased):
“If it’s easier to write a query using SQL than Django, then do it. extra() is
nasty and should be avoided; raw() is great and should be used where appro-
priate.”

6.1.3 Add Indexes as Needed

While adding db index=True to any model eld is easy, understanding when it should be done
takes a bit of judgment. Our preference is to start without indexes and add them as needed.

When to consider adding indexes:

ä e index is used frequently, as in 10-25% of all queries.
ä ere is real data, or something that approximates real data, so we can analyze the results of

indexing.
ä We can run tests to determine if indexing generates an improvement in results.

When using PostgreSQL, pg stat activity tells us what indexes are actually being used.

Once a project goes live, chapter 20, Finding and Reducing Bottlenecks, has information on index
analysis.

6.1.4 Be Careful With Model Inheritance

Model inheritance in Django is a tricky subject. Django provides three ways to do model inheritance:
abstract base classes, multi-table inheritance, and proxy models.

..

WARNING: Django Abstract Base Classes <> Python Abstract
Base Classes

.

Don’t confuse Django abstract base classes with the abstract base classes in the Python stan-
dard library’s abc module, as they have very different purposes and behaviors.

49

Chapter 6: Database/Model Best Practices

Here are the pros and cons of the three model inheritance styles. To give a complete comparison, we
also include the option of using no model inheritance to begin with:

Model Inheritance
Style

Pros Cons

No model inheritance: if models
have a common field, give both
models that field.

Makes it easiest to understand at a
glance how Django models map to
database tables.

If there are a lot of fields
duplicated across models, this
can be hard to maintain.

Abstract base classes: tables are
only created for derived models.

Having the common fields in an
abstract parent class saves us from
typing them more than once.
We don't get the overhead of extra
tables and joins that are incurred from
multi-table inheritance.

We cannot use the parent class
in isolation.

Multi-table inheritance: tables
are created for both parent and
child. An implied
OneToOneField links parent
and child.

Gives each model its own table, so that
we can query either parent or child
model.
Also gives us the ability to get to a
child object from a parent object:
parent.child

Adds substantial overhead since
each query on a child table
requires joins with all parent
tables.
We strongly recommend against
using multi-table inheritance.
See the warning below.

Proxy models: a table is only
created for the original model.

Allows us to have an alias of a model
with different Python behavior.

We cannot change the model's
fields.

Table 6.1: Pros and Cons of the Model Inheritance Styles

..

WARNING: Avoid Multi-Table Inheritance

.

Multi-table inheritance, sometimes called “concrete inheritance,” is considered by the authors
and many other developers to be a bad thing. We strongly recommend against using it. We’ll
go into more detail about this shortly.

Here are some simple rules of thumb for knowing which type of inheritance to use and when:

ä If the overlap between models is minimal (e.g. you only have a couple of models that share one

50

6.1: Basics

or two obvious elds), there might not be a need for model inheritance. Just add the elds to
both models.

ä If there is enough overlap between models that maintenance of models’ repeated elds causes
confusion and inadvertent mistakes, then in most cases the code should be refactored so that
the common elds are in an abstract base class.

ä Proxy models are an occasionally-useful convenience feature, but they’re very different from
the other two model inheritance styles.

ä At all costs, everyone should avoid multi-table inheritance (see warning above) since it adds
both confusion and substantial overhead. Instead of multi-table inheritance, use explicit One-
ToOneFields and ForeignKeys between models so you can control when joins are traversed.

6.1.5 Model Inheritance in Practice: The TimeStampedModel

It’s very common in Django projects to include a created and modified timestamp eld on all
your models. We could manually add those elds to each and every model, but that’s a lot of work
and adds the risk of human error. A better solution is to write a TimeStampedModel to do the work
for us:

..

E .

core/models.py
from django.db import models

class TimeStampedModel(models.Model):
"""
An abstract base class model that provides self-
updating ``created`` and ``modified`` fields.
"""
created = models.DateTimeField(auto_now_add=True)
modified = models.DateTimeField(auto_now=True)

class Meta:
abstract = True

Take careful note of the very last two lines in the example, which turn our example into an abstract
base class:

51

Chapter 6: Database/Model Best Practices

..

E .

class Meta:
abstract = True

By de ning TimeStampedModel as an abstract base class when we de ne a new class that inherits
from it, Django doesn’t create a model utils.time stamped model table when syncdb is run.

Let’s put it to the test:

..

E .

flavors/models.py
from django.db import models

from core.models import TimeStampedModel

class Flavor(TimeStampedModel):
title = models.CharField(max_length=200)

is only creates one table: the flavors flavor database table. at’s exactly the behavior we
wanted.

On the other hand, if TimeStampedModel was not an abstract base class (i.e. a concrete base class
via multi-table inheritance), it would also create a model utils time stamped model table. Not
only that, but all of its subclasses including Flavor would lack the elds and have implicit foreign
keys back to TimeStampedModel just to handle created/modified timestamps. Any reference to
Flavor that reads or writes to the TimeStampedModel would impact two tables. (ank goodness
it’s abstract!)

Remember, concrete inheritance has the potential to become a nasty performance bottleneck. is
is even more true when you subclass a concrete model class multiple times.

Further reading:

ä http://2scoops.co/1.5-model-inheritance

52

http://2scoops.co/1.5-model-inheritance

6.2: Django Model Design

6.1.6 Use South for Migrations

South is one of those rare third-party packages that almost everyone in the Django community uses
these days. South is a tool for managing data and schema migrations. Get to know South’s features
well.

A few South tips:

ä As soon as a new app or model is created, take that extra minute to create the initial South
migrations for that new app or model.

ä Write reverse migrations and test them! You can’t always write perfect round-trips, but not
being able to back up to an earlier state really hurts bug tracking and sometimes deployment
in larger projects.

ä While working on a Django app, atten migration(s) to just one before pushing the new code
to production. In other words, commit “just enough migrations” to get the job done.

ä Never remove migration code that’s already in production.
ä If a project has tables with millions of rows in them, do extensive tests against data of that size

on staging servers before running a South migration on a production server. Migrations on
real data can take much, much, much more time than anticipated.

..

WARNING: Don't RemoveMigrations From Existing Projects In
Production

.

We’re reiterating the bullet on removing migrations from existing projects in production.
Regardless of any justi cations given for removing migrations, doing so removes the history
of the project at a number of levels. Removing migrations is analogous to deleting an audit
trail, and any problems that may be caused by deletion of migrations might not be detectable
for some time.

6.2 Django Model Design

One of the most difficult topics that receives the least amount of attention is how to design good
Django models.

How do you design for performance without optimizing prematurely? Let’s explore some strategies
here.

53

Chapter 6: Database/Model Best Practices

6.2.1 Start Normalized

We suggest that readers of this book need to be familiar with database normalization. If you are
unfamiliar with database normalization, make it your responsibility to gain an understanding, as
working with models in Django effectively requires a working knowledge of this. Since a detailed
explanation of the subject is outside the scope of this book, we recommend the following resources:

ä http://en.wikipedia.org/wiki/Database_normalization
ä http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When you’re designing your Django models, always start off normalized. Take the time to make sure
that no model should contain data already stored in another model.

At this stage, use relationship elds liberally. Don’t denormalize prematurely. You want to have a
good sense of the shape of your data.

6.2.2 Cache Before Denormalizing

Often, setting up caching in the right places can save you the trouble of denormalizing your models.
We’ll cover caching in much more detail in chapter 20, Finding and Reducing Bottlenecks, so don’t
worry too much about this right now.

6.2.3 Denormalize Only if Absolutely Needed

It can be tempting, especially for those new to the concepts of data normalization, to denormalize
prematurely. Don’t do it! Denormalization may seem like a panacea for what causes problems in a
project. However it’s a tricky process that risks adding complexity to your project and dramatically
raises the risk of losing data.

Please, please, please explore caching before denormalization.

When a project has reached the limits of what the techniques described in chapter 20, Finding and
Reducing Bottlenecks can address, that’s when research into the concepts and patterns of database
denormalization should begin.

54

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization

6.2: Django Model Design

6.2.4 When to Use Null and Blank

When de ning a model eld, you have the ability to set the null=True and the blank=True
options. By default, they are False.

Knowing when to use these options is a common source of confusion for developers.

We’ve put this guide together to serve as a guide for standard usage of these model eld arguments.

Field Type Setting null=True Setting blank=True

CharField, TextField,
SlugField, EmailField,
CommaSeparatedInteger-
Field,
etc.

Don't do this.
Django's convention is to store empty
values as the empty string, and to
always retrieve NULL or empty values
as the empty string for consistency.

Okay.
Do this if you want the
corresponding form widget to
accept empty values.
If you set this, empty values get
stored as empty strings in the
database.

BooleanField Don't do this. Use
NullBooleanField instead.

Don't do this.

IntegerField,
FloatField,
DecimalField, etc

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values. If so, you
will also want to set
null=True.

DateTimeField,
DateField, TimeField,
etc.

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget to
accept empty values, or if you
are using auto now or
auto now add. If so, you will
also want to set null=True.

ForeignKey,
ManyToManyField,
OneToOneField

Okay if you want to be able to set the
value to NULL in the database.

Okay if you want the
corresponding form widget (e.g.
the select box) to accept empty
values.

55

Chapter 6: Database/Model Best Practices

Field Type Setting null=True Setting blank=True

IPAddressField,
GenericIPAddress-
Field

Okay if you want to be able to set the
value to NULL in the database.

Not recommended. In
PostgreSQL, the native inet type
is used here and cannot be set
to the empty string. (Other
database backends use char or
varchar for this, though.)

Table 6.2: When To use Null and Blank by Field

..

WARNING: IPAddressField in PostgreSQL

.

At the time of this writing, there is an open ticket (#5622) related to IPAddressFields:
‘Empty ipaddress raises an error (invalid input syntax for type inet: "") [sic].’
Until this ticket is resolved, we recommend using null=True and blank=False with
IPAddressFields.
See http://code.djangoproject.com/ticket/5622 for more details.

Figure 6.1: A common source of confusion.

6.3 Model Managers

Every time we use the Django ORM to query a model, we are using an interface called a model
manager to interact with the database. Model managers are said to act on the full set of all possible

56

https://code.djangoproject.com/ticket/5622
http://code.djangoproject.com/ticket/5622

6.3: Model Managers

instances of this model class (all the data in the table) to restrict the ones you want to work with.
Django provides a default model manager for each model class, but we can de ne our own.

Here’s a simple example of a custom model manager:

..

E .

from django.db import models
from django.utils import timezone

class PublishedManager(models.Manager):

use_for_related_fields = True

def published(self, **kwargs):
return self.filter(pub_date__lte=timezone.now(), **kwargs)

class FlavorReview(models.Model):
review = models.CharField(max_length=255)
pub_date = models.DateTimeField()

add our custom model manager
objects = PublishedManager()

Now, if we rst want to display a count of all of the ice cream avor reviews, and then a count of just
the published ones, we can do the following:

..

E .

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.count()
35
>>> FlavorReview.objects.published().count()
31

Easy, right? Yet wouldn’t it make more sense if you just added a second model manager? at way
you could have something like:

57

Chapter 6: Database/Model Best Practices

..

B E .

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.filter().count()
35
>>> FlavorReview.published.filter().count()
31

On the surface, replacing the default model manager seems like the obvious thing to do. Unfortu-
nately, our experiences in real project development makes us very careful when we use this method.
Why?

First, when using model inheritance, children of abstract base classes receive their parent’s model
manager, and children of concrete base classes do not.

Second, the rst manager applied to a model class is the one that Django treats as the default. is
breaks signi cantly with the normal Python pattern, causing what can appear to be unpre-
dictable results from QuerySets.

With this knowledge in mind, in your model class, objects = models.Manager() should be
de ned manually above any custom model manager.

..

WARNING: Know the Model Manager Order of Operations

.

Always set objects = models.Manager() above any custom model manager that has a
new name.

Additional reading:

ä https://docs.djangoproject.com/en/1.5/topics/db/managers/

6.4 Summary

Models are the foundation for most Django projects, so take the time to design them thoughtfully.

Start normalized, and only denormalize if you’ve already explored other options thoroughly. You
may be able to simplify slow, complex queries by dropping down to raw SQL, or you may be able to
address your performance issues with caching in the right places.

58

https://docs.djangoproject.com/en/1.5/topics/db/managers/

6.4: Summary

Don’t forget to use indexes. Add indexes when you have a better feel for how you’re using data
throughout your project.

If you decide to use model inheritance, inherit from abstract base classes rather than concrete models.
You’ll save yourself from the confusion of dealing with implicit, unneeded joins.

Watch out for the “gotchas” when using the null=True and blank=Truemodel eld options. Refer
to our handy table for guidance.

Finally, use South to manage your data and schema migrations. It’s a fantastic tool. You may also
nd django-model-utils and django-extensions pretty handy.

Our next chapter is all about views.

59

Chapter 6: Database/Model Best Practices

60

7 | Function- and Class-Based Views

Both function-based views (FBVs) and class-based views (CBVs) are in Django 1.5. We recommend
that you understand how to use both types of views.

.....

TIP: Function-Based Views Are Not Deprecated

.

ere was a bit of confusion about this due to the wording of the release notes and incorrect
information on some blog posts. To clarify:

..
1 Function-based views are still in Django 1.5. No plans exist for removing function-

based views from Django. ey are in active use, and they are great to have when you
need them.

..
2 Function-based generic views such as direct to template and object list were

deprecated in Django 1.3 and removed in 1.5.

7.1 When to Use FBVs or CBVs

Whenever you implement a view, think about whether it would make more sense to implement as a
FBV or as a CBV. Some views are best implemented as CBVs, and others are best implemented as
FBVs.

If you aren’t sure which method to choose, on the next page we’ve included a ow chart that might
be of assistance.

61

Chapter 7: Function- and Class-Based Views

Figure 7.1: Should you use a FBV or a CBV? ow chart.

is owchart follows our preference for using CBVs over FBVs. We prefer to use CBVs for most
views, using FBVs to implement only the complicated views that would be a pain to implement with
CBVs.

.....

TIP: Alternative Approach - Staying With FBVs

.

Some developers prefer to err on the side of using FBVs for most views and CBVs only for
views that need to be subclassed. at strategy is ne as well.

62

7.2: Keep View Logic Out of URLConfs

7.2 Keep View Logic Out of URLConfs

Requests are routed to views via URLConfs, in a module that is normally named urls.py. Per Django’s
URL design philosophy (http://2scoops.co/1.5-url-design), the coupling of views with
urls is loose, allows for in nite exibility, and encourages best practices.

And yet, this is what Daniel feels like yelling every time he sees complex urls.py les:

“I didn’t write J2EE XML and Zope ZCML con guration les back in the day just so you
darn kids could stick logic into Django url les!”

Remember that Django has a wonderfully simple way of de ning URL routes. Like everything else
we bring up in this book, that simplicity is to be honored and respected. e rules of thumb are
obvious:

..
1 e views modules should contain view logic.
..
2 e URL modules should contain URL logic.

Ever see code like this? Perhaps in the official Django tutorial?

..

B E .

from django.conf.urls import patterns, url
from django.views.generic import DetailView

from tastings.models import Tasting

urlpatterns = patterns("",
url(r"ˆ(?P<pk>\d+)/$",

DetailView.as_view(
model=Tasting,
template_name="tastings/detail.html"),

name="detail"),
url(r"ˆ(?P<pk>\d+)/results/$",

DetailView.as_view(
model=Tasting,
template_name="tastings/results.html"),

name="results"),
)

63

http://2scoops.co/1.5-url-design

Chapter 7: Function- and Class-Based Views

At a glance this code might seem okay, but we argue that it violates the Django design philosophies:

ä Loose coupling between views, urls, and models has been replaced with tight coupling, mean-
ing you can never reuse the view de nitions.

ä Don’t Repeat Yourself is violated by using the same/similar arguments repeatedly between
CBVs.

ä In nite Flexibility (for URLs) is destroyed. Class inheritance, the primary advantage of Class
Based Views, is impossible using this anti-pattern.

ä Lots of other issues: What happens when you have to add in authentication? And what about
authorization? Are you going to wrap each URLConf view with two or more decorators?
Putting your view code into your URLConfs quickly turns your URLConfs into an unmain-
tainable mess.

In fact, we’ve heard from developers that seeing CBVs de ned in URLConfs this way was part of
why they steered clear of using them.

Alright, enough griping. We’ll show our preferences in the next section.

7.3 Stick to Loose Coupling in URLConfs

Here is how to create URLconfs that avoid the problems we mentioned on the previous page. First,
we write the views:

..

E .

tastings/views.py
from django.views.generic import DetailView

from .models import Tasting

class TasteDetailView(DetailView):
model = Tasting

class TasteResultsView(TasteDetailView):
template_name = "tastings/results.html"

en we de ne the urls:

64

7.3: Stick to Loose Coupling in URLConfs

..

E .

tastings/urls.py
from django.conf.urls import patterns
from django.conf.urls import url

from .views import TasteDetailView
from .views import TasteResultsView

urlpatterns = patterns("",
url(

regex=r"ˆ(?P<pk>\d+)/$",
view=TasteDetailView.as_view(),
name="detail"

),
url(

regex=r"ˆ(?P<pk>\d+)/results/$",
view=TasteResultsView.as_view(),
name="results"

),
)

Your rst response to our version of this should go something like, “Are you sure this is a good idea?
You changed things to use two les AND more lines of code! How is this better?”

Well, this is the way we do it. Here are some of the reasons we nd it so useful:

ä Don’t Repeat Yourself : No argument or attribute is repeated between views.
ä Loose coupling: We’ve removed the model and template names from the URLConf because

views should be views and URLConfs should be URLConfs. We should be able to call our
views from one or more URLConfs, and our approach lets us do just that.

ä URLConfs should do one thing and do it well: Related to our previous bullet, our URLConf
is now focused primarily on just one thing: URL routing. We aren’t tracking down view logic
across both views and URLConfs, we just look in our views.

ä Our views bene t from being class-based: Our views, by having a formal de nition in the
views module, can inherit from other classes. is means adding authentication, authoriza-
tion, new content formats, or any other business requirement tossed our way is much easier to

65

Chapter 7: Function- and Class-Based Views

handle.
ä In nite exibility: Our views, by having a formal de nition in the views module, can imple-

ment their own custom logic.

7.3.1 What if we aren't using CBVs?

e same rules apply.

We’ve encountered debugging nightmares of projects using FBVs with extensive URLConf hackery,
such as elaborate tricks with the le attribute of Python modules combined with directory walking
and regular expressions to automagically create URLConfs. If that sounds painful, it was.

Keep logic out of URLConfs!

7.4 Try to Keep Business Logic Out of Views

In the past, we’ve placed an amazing amount of sophisticated business logic into our views. Unfortu-
nately, when it became time to generate PDFs, add a REST API, or serve out other formats, placing
so much logic in our views made it much harder to deliver new formats.

is is where our preferred approach of model methods, manager methods, or general utility helper
function come into play. When business logic is placed into easily reusable components, and called
from within views, it makes extending components of the project to do more things much easier.

Since it’s not always possible to do this at the beginning of a project, our rule of thumb has become
whenever we nd ourselves duplicating business logic instead of Django boilerplate between views,
it’s time to move code out of the view.

7.5 Summary

is chapter started with discussing when to use either FBVs or CBVs, and matched our own pref-
erence for the latter. In fact, in the next chapter we’ll start to dig deep into the functionality that can
be exploited when using CBVs.

66

7.5: Summary

We also discussed keeping view logic out of the URLConfs. We feel view code belongs in the apps’
views.py modules, and URLConf code belongs in the apps’ urls.py modules. Adhering to this prac-
tice allows for object inheritance when used with class-based views, easier code reuse, and greater
exibility of design.

67

Chapter 7: Function- and Class-Based Views

68

8 | Best Practices for Class-Based
Views

Since the release of version 1.3, Django has supported class-based views (CBVs). Early problems with
CBVs have been addressed almost entirely, thanks to improvements in the core CBV documentation,
resources such as Marc Tamlyn and Charles Denton’s ccbv.co.uk code inspector, and the advent
of django-braces.

With a little practice, CBVs allow developers to create views at an astonishing pace. CBVs encourage
the reuse of view code, allowing you to create base views and subclass them. ey were brought into
Django core because of their power and exibility.

Here is a list of must-read Django CBV documentation:

ä http://2scoops.co/1.5-topics-class-based-views
ä http://2scoops.co/1.5-cbv-generic-display
ä http://2scoops.co/1.5-cbv-generic-editing
ä http://2scoops.co/1.5-cbv-mixins
ä http://2scoops.co/1.5-ref-class-based-views/
ä e CBV inspector at http://ccbv.co.uk

.....

PACKAGE TIP: CBVs + django-braces Are Great Together

.

We feel that django-braces is the missing component for Django CBVs. It provides a set of
clearly coded mixins that make Django CBVs much easier and faster to implement. e next
few chapters will demonstrate its mixins in various code examples.

69

http://ccbv.co.uk
http://2scoops.co/1.5-topics-class-based-views
http://2scoops.co/1.5-cbv-generic-display
http://2scoops.co/1.5-cbv-generic-editing
http://2scoops.co/1.5-cbv-mixins
http://2scoops.co/1.5-ref-class-based-views/
http://ccbv.co.uk

Chapter 8: Best Practices for Class-Based Views

e power of CBVs comes at the expense of simplicity: CBVs come with a complex inheritance
chain that can have up to eight superclasses on import. As a result, trying to work out exactly which
view to use or which method to customize can be very challenging at times.

We follow these guidelines when writing CBVs:

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when possible,

or in forms if you must.
ä Keep your views simple.
ä Keep your mixins simpler.

8.1 Using Mixins With CBVs
ink of mixins in programming along the lines of mixins in ice cream: you can enhance any ice

cream avor by mixing in crunchy candy bits, sliced fruit, or even bacon.

Figure 8.1: Popular and unpopular mixins used in ice cream.

Soft serve ice cream greatly bene ts from mixins: ordinary vanilla soft serve turns into birthday cake
ice cream when sprinkles, blue buttercream icing, and chunks of yellow cake are mixed in.

70

8.1: Using Mixins With CBVs

In programming, a mixin is a class that provides functionality to be inherited, but isn’t meant for
instantiation on its own. In programming languages with multiple inheritance, mixins can be used
to add enhanced functionality and behavior to classes.

You can use the power of mixins to composite useful and interesting new view classes for your Django
apps.

When using mixins to composite your own view classes, we recommend these rules of inheritance
provided by Kenneth Love. e rules follow Python’s method resolution order, which in the most
simplistic de nition possible, proceeds from left to right:

..
1 e base view classes provided by Django always go to the right.
..
2 Mixins go to the left of the base view.
..
3 Mixins should inherit from Python’s built-in object type.

Example of the rules in action:

..

E .

from django.views.generic import TemplateView

class FreshFruitMixin(object):

def get_context_data(self, **kwargs):
context = super(FreshFruitMixin,

self).get_context_data(**kwargs)
context["has_fresh_fruit"] = True
return context

class FruityFlavorView(FreshFruitMixin, TemplateView):
template_name = "fruity_flavor.html"

In our rather silly example, the FruityFlavorView class inherits from both FreshFruitMixin
and TemplateView.

Since TemplateView is the base view class provided by Django, it goes on the far right (rule 1),
and to its left we place the FreshFruitMixin (rule 2). is way we know that our methods and
properties will execute correctly.

Finally, FreshFruitMixin inherits from object (rule 3).

71

Chapter 8: Best Practices for Class-Based Views

8.2 Which Django CBV Should Be Used for What Task?

It can be challenging to determine which view you should use where. Some views are very obvious,
such as those that perform operations that create, read, update, or delete data, but others are harder
to determine.

Here’s a handy chart listing the name and purpose of each Django CBV. All views listed here are
assumed to be pre xed with django.views.generic (pre x omitted in order to save space in the
table).

Name Purpose Two Scoops Example

View Base view or handy view that can be used for
anything.

See section 11.2, `Implementing a
Simple JSON API'.

RedirectView Redirect user to another URL Send users who visit `/log-in/' to
`/login/'.

TemplateView Display a Django HTML template. The `/about/' page of our site.

ListView List objects List of ice cream flavors.

DetailView Display an object Details on an ice cream flavor.

FormView Submit a form The site's contact or email form.

CreateView Create an object Create a new ice cream flavor.

UpdateView Update an object Update an existing ice cream flavor.

DeleteView Delete an object Delete an unpleasant ice cream flavor
like Vanilla Steak.

Generic date views For display of objects that occur over a range
of time.

Blogs are a common reason to use
them. For Two Scoops, we could create
a public history of when flavors have
been added to the database.

Table 8.1: Django CBV Usage Table

72

8.3: General Tips for Django CBVs

.....

TIP: The Three Schools of Django CBV Usage

.

We’ve found that there are three major schools of thought around CBV usage. ey are:

e School of “Use all the views”!
is school of thought is based on the idea that since Django provides functionality to

reduce your workload, why not use that functionality? We tend to belong to this school of
thought to great success, rapidly building and then maintaining a number of projects.

e School of “Just use django.views.generic.View”
is school of thought is based on the idea that the base Django CBV does just enough.

While we don’t follow this approach ourselves, some very good Django developers do.

e School of “Avoid them unless you’re actually subclassing views”
Jacob Kaplan-Moss says, “My general advice is to start with function views since they’re
easier to read and understand, and only use CBVs where you need them. Where do you
need them? Any place where you need a fair chunk of code to be reused among multiple
views.”

We belong to the rst school, but it’s good for you to know that there’s no real consensus on
best practices here.

8.3 General Tips for Django CBVs

is section covers useful tips for all or many Django CBV implementations.

8.3.1 Constraining Django CBV Access to Authenticated Users

While the Django CBV documentation gives a helpful working example of using the
django.contrib.auth.decorators.login required decorator with a CBV, the example
contains a lot of boilerplate cruft: http://2scoops.co/1.5-login-required-cbv

Fortunately, django-braces provides a ready implementation of a LoginRequiredMixin that you

73

http://2scoops.co/1.5-login-required-cbv

Chapter 8: Best Practices for Class-Based Views

can attach in moments. For example, we could do the following in all of the Django CBVs that we’ve
written so far:

..

E .

flavors/views.py
from django.views.generic import DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorDetailView(LoginRequiredMixin, DetailView):
model = Flavor

.....

TIP: Don't Forget the CBV Mixin Order!

.

Remember that:
ä LoginRequiredMixin must always go on the far left side.
ä e base view class must always go on the far right side.

If you forget and switch the order, you will get broken or unpredictable results.

8.3.2 Performing Custom Actions on Views With Valid Forms

When you need to perform a custom action on a view with a valid form, the form valid()method
is where the CBV work ow sends the request.

..

E .

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

74

8.3: General Tips for Django CBVs

..

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

def form_valid(self, form):
Do custom logic here
return super(FlavorCreateView, self).form_valid(form)

To perform custom logic on form data that has already been validated, simply
add the logic to form valid(). e return value of form valid() should be a
django.http.HttpResponseRedirect.

8.3.3 Performing Custom Actions on Views With Invalid Forms

When you need to perform a custom action on a view with an invalid form, the form invalid()
method is where the Django CBV work ow sends the request. is method should return a
django.http.HttpResponse.

..

E .

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

def form_invalid(self, form):
Do custom logic here
return super(FlavorCreateView, self).form_invalid(form)

Just as you can add logic to form valid(), you can also add logic to form invalid().

75

Chapter 8: Best Practices for Class-Based Views

You’ll see an example of overriding both of these methods in chapter 10, More ings To Know About
Forms, subsection 10.2.1, ‘Form Data Is Saved to the Form, en the Model Instance.’

Additional References:

ä http://pydanny.com/tag/class-based-views.html
ä www.python.org/download/releases/2.3/mro/

Figure 8.2: e other CBV: class-based vanilla ice cream.

8.4 How CBVs and Forms Fit Together

A common source of confusion with CBVs is their usage with Django forms.

Using our favorite example of the ice cream avor tracking app, let’s chart out a couple of examples
of how form-related views might t together.

First, let’s de ne a avor model to use in this section’s view examples:

76

http://pydanny.com/tag/class-based-views.html
www.python.org/download/releases/2.3/mro/

8.4: How CBVs and Forms Fit Together

..

E .

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

STATUS = (
(0, "zero"),
(1, "one"),

)

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0, choices=STATUS)

def get_absolute_url(self):
return reverse("flavor_detail", kwargs={"slug": self.slug})

Now, let’s explore some common Django form scenarios that most Django users run into at one
point or another.

8.4.1 Views + ModelForm Example

is is the simplest and most common Django form scenario. Typically when you create a model,
you want to be able to add new records and update existing records that correspond to the model.

In this example, we’ll show you how to construct a set of views that will create, update and display
Flavor records. We’ll also demonstrate how to provide con rmation of changes.

Here we have the following views:

..
1 FlavorCreateView corresponds to a form for adding new avors.
..
2 FlavorUpdateView corresponds to a form for editing existing avors.
..
3 FlavorDetailView corresponds to the con rmation page for both avor creation and avor

updates.

77

Chapter 8: Best Practices for Class-Based Views

To visualize our views:

Figure 8.3: Views + ModelForm Flow

Note that we stick as closely as possible to Django naming conventions. FlavorCreateView sub-
classes Django’s CreateView, FlavorUpdateView subclasses Django’s UpdateView, and Fla-
vorDetailView subclasses Django’s DetailView.

Writing these views is easy, since it’s mostly a matter of using what Django gives us:

..

E .

flavors/views.py
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor

class FlavorDetailView(DetailView):
model = Flavor

Simple at rst glance, right? We accomplish so much with just a little bit of code!

78

8.4: How CBVs and Forms Fit Together

But wait, there’s a catch. If we wire these views into a urls.py module and create the necessary tem-
plates, we’ll uncover a problem:

e FlavorDetailView is not a con rmation page.

For now, that statement is correct. Fortunately, we can x it quickly with a few modi cations to
existing views and templates.

e rst step in the x is to use django.contrib.messages to inform the user visiting the Fla-
vorDetailView that they just added or updated the avor.

We’ll need to override the FlavorCreateView.form valid() and FlavorUpdate-
View.form valid() methods. We can do this conveniently for both views with a Flavo-
rActionMixin.

For the con rmation page x, we change avors/views.py to contain the following:

..

E .

flavors/views.py
from django.contrib import messages
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorActionMixin(object):

@property
def action(self):

msg = "{0} is missing action.".format(self.__class__)
raise NotImplementedError(msg)

def form_valid(self, form):
msg = "Flavor {0}!".format(self.action)
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

79

Chapter 8: Best Practices for Class-Based Views

..

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor
action = "created"

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

model = Flavor
action = "updated"

class FlavorDetailView(DetailView):
model = Flavor

Earlier in this chapter, we covered a simpler example of how to override form valid() within a
CBV. Here, we reuse a similar form valid() override method by creating a mixin to inherit from
in multiple views.

Now we’re using Django’s messages framework to display con rmation messages to the user upon
every successful add or edit. We de ne a FlavorActionMixin whose job is to queue up a con r-
mation message corresponding to the action performed in a view.

.....

TIP: Mixins Should Inherit From Object

.

Please take notice that the FlavorActionMixin inherits from Python’s object type rather
than a pre-existing mixin or view. It’s important that mixins have as shallow inheritance chain
as possible. Simplicity is a virtue!

After a avor is created or updated, a list of messages is passed to the context of the FlavorDe-
tailView. We can see these messages if we add the following code to the views’ template and then
create or update a avor:

..

E .

{# templates/flavors/flavor_detail.html #}
{% if messages %}

80

8.4: How CBVs and Forms Fit Together

..

<ul class="messages">
{% for message in messages %}
<li id="message_{{ forloop.counter }}"

{% if message.tags %} class="{{ message.tags }}"
{% endif %}>

{{ message }}

{% endfor %}

{% endif %}

.....

TIP: Reuse the Messages Template Code!

.

It is common practice to put the above code into your project’s base HTML template. Doing
this allows message support for templates in your project.

To recap, this example demonstrated yet again how to override the form valid()method, incorpo-
rate this into a mixin, how to incorporate multiple mixins into a view, and gave a quick introduction
to the very useful django.contrib.messages framework.

8.4.2 Views + Form Example

Sometimes you want to use a Django Form rather than a ModelForm. Search forms are a particularly
good use case for this, but you’ll run into other scenarios where this is true as well.

In this example, we’ll create a simple avor search form. is involves creating a HTML form that
doesn’t modify any avor data. e form’s action will query the ORM, and the records found will be
listed on a search results page.

Our intention is that when using our avor search page, if users do a avor search for “Dough”,
they should be sent to a page listing ice cream avors like “Chocolate Chip Cookie Dough,” “Fudge
Brownie Dough,” “Peanut Butter Cookie Dough,” and other avors containing the string “Dough”
in their title. Mmm, we de nitely want this feature in our web application.

81

Chapter 8: Best Practices for Class-Based Views

ere are more complex ways to implement this, but for our simple use case, all we need is a single
view. We’ll use a FlavorListView for both the search page and the search results page.

Here’s an overview of our implementation:

Figure 8.4: Views + Form Flow

In this scenario, we want to follow the standard internet convention for search pages, where ‘q’ is
used for the search query parameter. We also want to accept a GET request rather than a POST
request, which is unusual for forms but perfectly ne for this use case. Remember, this form doesn’t
add, edit, or delete objects, so we don’t need a POST request here.

To return matching search results based on the search query, we need to modify the standard queryset
supplied by the ListView. To do this, we override the ListView's get queryset() method.
We add the following code to avors/views.py:

..

E .

from django.views.generic import ListView

from .models import Flavor

class FlavorListView(ListView):
model = Flavor

def get_queryset(self):
Fetch the queryset from the parent get_queryset
queryset = super(FlavorListView, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

Return a filtered queryset
return queryset.filter(title__icontains=q)

82

8.5: Summary

..
Return the base queryset
return queryset

Now, instead of listing all of the avors, we list only the avors whose titles contain the search string.

As we mentioned, search forms are unusual in that unlike nearly every other HTML form they
specify a GET request in the HTML form. is is because search forms are not changing data, but
simply retrieving information from the server. e search form should look something like this:

..

E .

{# templates/flavors/_flavor_search.html #}
{% comment %}

Usage: {% include "flavors/_flavor_search.html" %}
{% endcomment %}
<form action="{% url "flavor_list" %}" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

.....

TIP: Specify the Form Target in Search Forms

.

We also take care to specify the URL in the form action, because we’ve found that search
forms are often included in several pages. is is why we pre x them with ‘ ’ and create them
in such a way as to be included in other templates.

Once we get past overriding the ListView's get queryset() method, the rest of this example
is just a simple HTML form. We like this kind of simplicity.

8.5 Summary

is chapter covered:

ä Using mixins with CBVs

83

Chapter 8: Best Practices for Class-Based Views

ä Which Django CBV should be used for which task
ä General tips for CBV usage
ä Connecting CBVs to forms

e next chapter explores common CBV/form patterns. Knowledge of these is helpful to have in
your developer toolbox.

84

9 | Common Patterns for Forms

Django forms are powerful, exible, extensible, and robust. For this reason, the Django admin and
CBVs use them extensively. In fact, all the major Django API frameworks use ModelForms as part
of their validation because of their powerful validation features.

Combining forms, models, and views allows us to get a lot of work done for little effort. e learning
curve is worth it: once you learn to work uently with these components, you’ll nd that Django
provides the ability to create an amazing amount of useful, stable functionality at an amazing pace.

.....

PACKAGE TIP: Useful Form-Related Packages

.

ä django- oppyforms for rendering Django inputs in HTML5.
ä django-crispy-forms for advanced form layout controls. By default, forms are rendered

with Twitter Bootstrap form elements and styles. is package plays well with django-
oppyforms, so they are often used together.

ä django-forms-bootstrap is a simple tool for rendering Django forms using Twitter
Bootstrap styles. is package plays well with django- oppyforms but con icts with
django-crispy-forms.

9.1 The Power of Django Forms

You might not be aware of the fact that even if your Django project uses an API framework and
doesn’t serve HTML, you are probably still using Django forms. Django forms are not just for web
pages; their powerful validation features are useful on their own.

85

Chapter 9: Common Patterns for Forms

Interestingly enough, the design that Django’s API frameworks use is some form of class-based view.
ey might have their own implementation of CBVs (i.e. django-tastypie) or run off of Django’s own

CBVs (django-rest-framework), but the use of inheritance and composition is a constant. We would
like to think this is proof of the soundness of both Django forms and the concept of CBVs.

With that in mind, this chapter goes explicitly into one of the best parts of Django: forms, models,
and CBVs working in concert. is chapter covers ve common form patterns that should be in every
Django developer’s toolbox.

9.2 Pattern 1: Simple ModelForm With Default Valida-
tors

e simplest data-changing form that we can make is a ModelForm using several default validators
as-is, without modi cation. In fact, we already relied on default validators in chapter 8, Best Practices
for Class-Based Views, subsection 8.4.1, “Views + ModelForm Example.”

If you recall, using ModelForms with CBVs to implement add/edit forms can be done in just a few
lines of code:

..

E .

flavors/views.py
from django.views.generic import CreateView, UpdateView

from braces.views import LoginRequiredMixin

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor

To summarize how we use default validation as-is here:

ä FlavorCreateView and FlavorUpdateView are assigned Flavor as their model.

86

9.3: Pattern 2: Custom Form Field Validators in ModelForms

ä Both views auto-generate a ModelForm based on the Flavor model.
ä ose ModelForms rely on the default eld validation rules of the Flavor model.

Yes, Django gives us a lot of great defaults for data validation, but in practice, the defaults are never
enough. We recognize this, so as a rst step, the next pattern will demonstrate how to create a custom
eld validator.

9.3 Pattern 2: Custom Form Field Validators in Mod-
elForms

What if we wanted to be certain that every use of the title eld across our project’s dessert apps
started with the word ‘Tasty’?

is is a string validation problem that can be solved with a simple custom eld validator.

In this pattern, we cover how to create custom single- eld validators and demonstrate how to add
them to both abstract models and forms.

Imagine for the purpose of this example that we have a project with two different dessert-related
models: a Flavor model for ice cream avors, and a Milkshake model for different types of milk-
shakes. Assume that both of our example models have title elds.

To validate all editable model titles, we start by creating a validators.py module:

..

E .

core/validators.py
from django.core.exceptions import ValidationError

def validate_tasty(value):
""" Raise a ValidationError if the

value doesn't start with the
word 'Tasty'

"""
if not value.startswith(u"Tasty"):

msg = u"Must start with Tasty"
raise ValidationError(msg)

87

Chapter 9: Common Patterns for Forms

In Django, a custom eld validator is simply a function that raises an error if the submitted argument
doesn’t pass its test.

Of course, while our validate tasty() validator function just does a simple string check for the
sake of example, it’s good to keep in mind that form eld validators can become quite complex in
practice.

.....

TIP: Test Your Validators Carefully

.

Since validators are critical in keeping corruption out of Django project databases, it’s espe-
cially important to write detailed tests for them.

ese tests should include thoughtful edge case tests for every condition related to your val-
idators’ custom logic.

In order to use our validate tasty() validator function across different dessert models, we’re
going to rst add it to an abstract model called TastyTitleAbstractModel, which we plan to use
across our project.

Assuming that our Flavor and Milkshake models are in separate apps, it doesn’t make sense to
put our validator in one app or the other. Instead, we create a core/models.py module and place the
TastyTitleAbstractModel there.

..

E .

core/models.py
from django.db import models

from .validators import validate_tasty

class TastyTitleAbstractModel(models.Model):

title = models.CharField(max_length=255, validators=[validate_tasty])

class Meta:
abstract = True

88

9.3: Pattern 2: Custom Form Field Validators in ModelForms

e last two lines of the above example code for core/models.py make TastyTitleAbstractModel
an abstract model, which is what we want.

Let’s alter the original avors/models.py Flavor code to use TastyTitleAbstractModel as the
parent class:

..

E .

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

from core.models import TastyTitleAbstractModel

class Flavor(TastyTitleAbstractModel):
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse("flavor_detail", kwargs={"slug": self.slug})

is works with the Flavor model, and it will work with any other tasty food-based model such
as a WaffleCone or Cake model. Any model that inherits from the TastyTitleAbstractModel
class will throw a validation error if anyone attempts to save a model with a title that doesn’t start
with ‘Tasty’.

Now, let’s explore a couple of questions that might be forming in your head:

ä What if we wanted to use validate tasty() in just forms?
ä What if we wanted to assign it to other elds besides the title?

To support these behaviors, we need to create a custom FlavorForm that utilizes our custom eld
validator:

..

E .

flavors/forms.py
from django import forms

89

Chapter 9: Common Patterns for Forms

..

from core.validators import validate_tasty
from .models import Flavor

class FlavorForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

super(FlavorForm, self).__init__(*args, **kwargs)
self.fields["title"].validators.append(validate_tasty)
self.fields["slug"].validators.append(validate_tasty)

class Meta:
model = Flavor

A nice thing about both examples of validator usage in this pattern is that we haven’t had to change
the validate tasty() code at all. Instead, we just import and use it in new places.

Attaching the custom form to the views is our next step. e default behavior of Django model-based
edit views is to auto-generate the ModelForm based on the view’s model attribute. We are going
to override that default and pass in our custom FlavorForm. is occurs in the avors/views.py
module, where we alter the create and update forms as demonstrated below:

..

E .

flavors/views.py
from django.contrib import messages
from django.views.generic import CreateView, UpdateView, DetailView

from braces.views import LoginRequiredMixin

from .models import Flavor
from .forms import FlavorForm

class FlavorActionMixin(object):

@property
def action(self):

msg = "{0} is missing action.".format(self.__class__)
raise NotImplementedError(msg)

90

9.4: Pattern 3: Overriding the Clean Stage of Validation

..

def form_valid(self, form):
msg = "Flavor {0}!".format(self.action)
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor
action = "created"
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

model = Flavor
action = "updated"
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorDetailView(DetailView):
model = Flavor

e FlavorCreateView and FlavorUpdateView views now use the new FlavorForm to validate
incoming data.

Note that with these modi cations, the Flavor model can either be identical to the one at the start
of this chapter, or it can be an altered one that inherits from TastyTitleAbstractModel.

9.4 Pattern 3: Overriding the Clean Stage of Validation

Let’s discuss some interesting validation use cases:

ä Multi- eld validation
ä Validation involving existing data from the database that has already been validated

91

Chapter 9: Common Patterns for Forms

Both of these are great scenarios for overriding the clean() and clean <field name>()methods
with custom validation logic.

After the default and custom eld validators are run, Django provides a second stage and process for
validating incoming data, this time via the clean()method and clean <field name>()methods.
You might wonder why Django provides more hooks for validation, so here are our two favorite
arguments:

..
1 e clean() method is the place to validate two or more elds against each other, since it’s

not speci c to any one particular eld.
..
2 e clean validation stage is a better place to attach validation against persistent data. Since the

data already has some validation, you won’t waste as many database cycles on needless queries.

Let’s explore this with another validation example. Perhaps we want to implement an ice cream
ordering form, where users could specify the avor desired, add toppings, and then come to our store
and pick them up.

Since we want to prevent users from ordering avors that are out of stock, we’ll put in a
clean slug() method. With our avor validation, our form might look like:

..

E .

flavors/forms.py
from django import forms
from flavors.models import Flavor

class IceCreamOrderForm(forms.Form):
""" Normally done with forms.ModelForm. But we use forms.Form here

to demonstrate that these sorts of techniques work on every
type of form.

"""

slug = forms.ChoiceField("Flavor")
toppings = forms.CharField()

def __init__(self, *args, **kwargs):
super(IceCreamOrderForm, self).__init__(*args,

**kwargs)
We dynamically set the choices here rather than

92

9.4: Pattern 3: Overriding the Clean Stage of Validation

..

in the flavor field definition. Setting them in
the field definition means status updates won't
be reflected in the form without server restarts.
self.fields["slug"].choices = [

(x.slug, x.title) for x in Flavor.objects.all()
]
NOTE: We could filter by whether or not a flavor
has any scoops, but this is an example of
how to use clean_slug, not filter().

def clean_slug(self):
slug = self.cleaned_data["slug"]
if Flavor.objects.get(slug=slug).scoops_remaining <= 0:

msg = u"Sorry, we are out of that flavor."
raise forms.ValidationError(msg)

return slug

For HTML-powered views, the clean slug() method in our example, upon throwing an error,
will attach a “Sorry, we are out of that avor” message to the avor HTML input eld. is is a great
shortcut for writing HTML forms!

Now imagine if we get common customer complaints about orders with too much chocolate. Yes, it’s
silly and quite impossible, but we’re just using ‘too much chocolate’ as a completely mythical example
for the sake of making a point.

In any case, let’s use the clean() method to validate the avor and toppings elds against each
other.

..

E .

attach this code to the previous example (9.13)
def clean(self):

cleaned_data = super(IceCreamOrderForm, self).clean()
slug = cleaned_data.get("slug", "")
toppings = cleaned_data.get("toppings", "")

Silly "too much chocolate" validation example

93

Chapter 9: Common Patterns for Forms

..

if u"chocolate" in slug.lower() and \
u"chocolate" in toppings.lower():

msg = u"Your order has too much chocolate."
raise forms.ValidationError(msg)

return cleaned_data

ere we go, an implementation against the impossible condition of too much chocolate!

9.5 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1
Model)

is is where we start to get fancy. We’re going to cover a situation where two views/forms correspond
to one model. We’ll hack Django forms to produce a form with custom behavior.

It’s not uncommon to have users create a record that contains a few empty elds which need additional
data later. An example might be a list of stores, where we want each store entered into the system as
fast as possible, but want to add more data such as phone number and description later. Here’s our
IceCreamStore model:

..

E .

stores/models.py
from django.core.urlresolvers import reverse
from django.db import models

class IceCreamStore(models.Model):
title = models.CharField(max_length=100)
block_address = models.TextField()
phone = models.CharField(max_length=20, blank=True)
description = models.TextField(blank=True)

def get_absolute_url(self):
return reverse("store_detail", kwargs={"pk": self.pk})

e default ModelForm for this model forces the user to enter the title and block address eld
but allows the user to skip the phone and description elds. at’s great for initial data entry, but

94

9.5: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

as mentioned earlier, we want to have future updates of the data to require the phone and description
elds.

e way we implemented this in the past before we began to delve into their construction was to
override the phone and description elds in the edit form. is resulted in heavily-duplicated code
that looked like this:

..

B E .

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):
Don't do this! Duplication of the model field!
phone = forms.CharField(required=True)
Don't do this! Duplication of the model field!
description = forms.TextField(required=True)

class Meta:
model = IceCreamStore

is form should look very familiar. Why is that?

Well, we’re nearly copying the IceCreamStore model!

is is just a simple example, but when dealing with a lot of elds on a model, the duplication becomes
extremely challenging to manage. In fact, what tends to happen is copy-pasting of code from models
right into forms, which is a gross violation of Don’t Repeat Yourself.

Want to know how gross? Using the above approach, if we add a simple help text attribute to
the description eld in the model, it will not show up in the template until we also modify the
description eld de nition in the form. If that sounds confusing, that’s because it is.

A better way is to rely on a useful little detail that’s good to remember about Django forms: instan-
tiated form objects store elds in a dict-like attribute called fields.

95

Chapter 9: Common Patterns for Forms

Instead of copy-pasting eld de nitions from models to forms, we can simply apply new attributes
to each eld in the init () method of the ModelForm:

..

E .

stores/forms.py
Call phone and description from the self.fields dict-like object
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):

class Meta:
model = IceCreamStore

def __init__(self, *args, **kwargs):
Call the original __init__ method before assigning
field overloads
super(IceCreamStoreUpdateForm, self).__init__(*args,

**kwargs)
self.fields["phone"].required = True
self.fields["description"].required = True

is improved approach allows us to stop copy-pasting code and instead focus on just the eld-
speci c settings.

An important point to remember is that when it comes down to it, Django forms are just Python
classes. ey get instantiated as objects, they can inherit from other classes, and they can act as
superclasses.

erefore, we can rely on inheritance to trim the line count in our ice cream store forms:

..

E .

stores/forms.py
from django import forms

from .models import IceCreamStore

96

9.5: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

..

class IceCreamStoreCreateForm(forms.ModelForm):

class Meta:
model = IceCreamStore
fields = ("title", "block_address",)

class IceCreamStoreUpdateForm(IceCreamStoreCreateForm):

def __init__(self, *args, **kwargs):
super(IceCreamStoreUpdateForm,

self).__init__(*args, **kwargs)
self.fields["phone"].required = True
self.fields["description"].required = True

class Meta(IceCreamStoreCreateForm.Meta):
show all the fields!
fields = ("title", "block_address", "phone",

"description",)

..

WARNING: Use Meta.fields and Never Use Meta.exclude

.

We use Meta.fields instead of Meta.exclude so that we know exactly what elds
we are exposing. See chapter 21, Security Best Practices, section 21.12, ‘Don’t use Mod-
elForms.Meta.exclude’.

Finally, now we have what we need to de ne the corresponding CBVs. We’ve got our form classes,
so let’s use them in the IceCreamStore create and update views:

..

E .

stores/views
from django.views.generic import CreateView, UpdateView

from .forms import IceCreamStoreCreateForm
from .forms import IceCreamStoreUpdateForm
from .models import IceCreamStore

97

Chapter 9: Common Patterns for Forms

..

class IceCreamCreateView(CreateView):
model = IceCreamStore
form_class = IceCreamStoreCreateForm

class IceCreamUpdateView(UpdateView):
model = IceCreamStore
form_class = IceCreamStoreUpdateForm

We now have two views and two forms that work with one model.

9.6 Pattern 5: Reusable Search Mixin View

In this example, we’re going to cover how to reuse a search form in two views that correspond to two
different models.

Assume that both models have a eld called title (this pattern also demonstrates why naming
standards in projects is a good thing). is example will demonstrate how a single CBV can be used
to provide simple search functionality on both the Flavor and IceCreamStore models.

We’ll start by creating a simple search mixin for our view:

..

E .

core/views.py
class TitleSearchMixin(object):

def get_queryset(self):
Fetch the queryset from the parent's get_queryset
queryset = super(TitleSearchMixin, self).get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

return a filtered queryset
return queryset.filter(title__icontains=q)

98

9.6: Pattern 5: Reusable Search Mixin View

..
No q is specified so we return queryset
return queryset

e above code should look very familiar as we used it almost verbatim in the Forms + View example.
Here’s how you make it work with both the Flavor and IceCreamStore views. First the avor
views:

..

E .

add to flavors/views.py
from django.views.generic import ListView

from core.views import TitleSearchMixin
from .models import Flavor

class FlavorListView(TitleSearchMixin, ListView):
model = Flavor

And we’ll add it to the ice cream store views:

..

E .

add to stores/views.py
from django.views.generic import ListView

from core.views import TitleSearchMixin
from .models import Store

class IceCreamStoreListView(TitleSearchMixin, ListView):
model = Store

As for the form? We just de ne it in HTML for each ListView:

..

E .

{# form to go into stores/store_list.html template #}
<form action="" method="GET">

99

Chapter 9: Common Patterns for Forms

..
<input type="text" name="q" />
<button type="submit">search</button>

</form>

and

..

E .

{# form to go into flavors/flavor_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

Now we have the same mixin in both views. Mixins are a good way to reuse code, but using too many
mixins in a single class makes for very hard-to-maintain code. As always, try to keep your code as
simple as possible.

9.7 Summary

We began this chapter with the simplest form pattern, using a ModelForm, CBV, and default val-
idators. We iterated on that with an example of a custom validator.

Next, we explored more complex validation. We covered an example overriding the clean methods.
We also closely examined a scenario involving two views and their corresponding forms that were
tied to a single model.

Finally, we covered an example of creating a reusable search mixin to add the same form to two
different apps.

100

10 | More Things to Know About
Forms

95% of Django projects should use ModelForms.
91% of all Django projects use ModelForms.
80% of ModelForms require trivial logic.
20% of ModelForms require complicated logic.

– pydanny made-up statistics™

Django’s forms are really powerful, but there are edge cases that can cause a bit of anguish.

If you understand the structure of how forms are composed and how to call them, most edge cases
can be readily overcome.

10.1 Use the POST Method in HTML Forms

Every HTML form that alters data must submit its data via the POST method:

..
E .

<form action="{% url "flavor_add" %}" method="post">

e only exception you’ll ever see to using POST in forms is with search forms, which typically
submit queries that don’t result in any alteration of data. Search forms that are idempotent should
use the GET method.

101

Chapter 10: More ings to Know About Forms

10.1.1 Don't Disable Django's CSRF Protection

is is covered in chapter 21, Security Best Practices, section 21.7, ‘Always Use CSRF Protection
With Forms at Modify Data.’ Also, please familiarize yourself with Django’s documentation on
the subject: https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

10.2 Know How Form Validation Works

Form validation is one of those areas of Django where knowing the inner workings will drastically
improve your code. Let’s take a moment to dig into form validation and cover some of the key points.

When you call form.is valid(), a lot of things happen behind the scenes. e following things
occur according to this work ow:

..
1 If the form has bound data, form.is valid() calls the form.full clean() method.
..
2 form.full clean() iterates through the form elds and each eld validates itself:

..a Data coming into the eld is coerced into Python via the to python()method or raises
a ValidationError.

..
b Data is validated against eld-speci c rules, including custom validators. Failure raises a

ValidationError.
..c If there are any custom clean <field>() methods in the form, they are called at this

time.
..
3 form.full clean() executes the form.clean() method.
..
4 If it’s a ModelForm instance, form. post clean() does the following:

..a Sets ModelForm data to the Model instance, regardless of whether form.is valid()
is True or False.

..
b Calls the model’s clean() method. For reference, saving a model instance through the

ORM does not call the model’s clean() method.

If this seems complicated, just remember that it gets simpler in practice, and that all of this function-
ality lets us really understand what’s going on with incoming data. e example in the next section
should help to explain this further.

102

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

10.2: Know How Form Validation Works

10.2.1 Form Data Is Saved to the Form, Then the Model Instance

We like to call this the WHAT?!? of form validation. At rst glance, form data being set to the form
instance might seem like a bug. But it’s not a bug. It’s intended behavior.

In a ModelForm, form data is saved in two distinct steps:

..
1 First, form data is saved to the form instance.
..
2 Later, form data is saved to the model instance.

Since ModelForms don’t save to the model instance until they are activated by the form.save()
method, we can take advantage of this separation as a useful feature.

For example, perhaps you need to catch the details of failed submission attempts for a form, saving
both the user-supplied form data as well as the intended model instance changes.

A simple, perhaps simplistic, way of capturing that data is as follows. First, we create a form failure
history model in core/models.py:

..

E .

core/models.py
from django.db import models

class ModelFormFailureHistory(models.Model):
form_data = models.TextField()
model_data = models.TextField()

Second, we add the following to the FlavorActionMixin in avors/views.py:

..

E .

flavors/models.py
import json

from django.contrib import messages
from django.core import serializers

from core.models import ModelFormFailureHistory

103

Chapter 10: More ings to Know About Forms

..

class FlavorActionMixin(object):

@property
def action(self):

msg = "{0} is missing action.".format(self.__class__)
raise NotImplementedError(msg)

def form_valid(self, form):
msg = "Flavor {0}!".format(self.action)
messages.info(self.request, msg)
return super(FlavorActionMixin, self).form_valid(form)

def form_invalid(self, form):
""" Save invalid form and model data for later reference """
form_data = json.dumps(form.cleaned_data)
model_data = serializers.serialize("json",

[form.instance])[1:-1]
ModelFormFailureHistory.objects.create(

form_data=form_data,
model_data=model_data

)
return super(FlavorActionMixin,

self).form_invalid(form)

If you recall, form invalid() is called after failed validation of a form with bad data. When it is
called here in this example, both the cleaned form data and the nal data saved to the database are
saved as a ModelFormFailureHistory record.

10.3 Summary

Once you dig into forms, keep yourself focused on clarity of code and testability. Forms are one of the
primary validation tools in your Django project, an important defense against attacks and accidental
data corruption.

104

11 | Building REST APIs in Django

Today’s internet is much more than HTML-powered websites. Developers need to support AJAX
and the mobile web. Having tools that support easy creation of JSON, YAML, XML, and other
formats is important. By design, a Representational StateTransfer (REST) ApplicationProgram-
ming Interface (API) exposes application data to other concerns.

.....

PACKAGE TIP: Packages For Crafting APIs

.

ä django-rest-framework builds off of Django CBVs, adding a wonderful browsable
API feature. It has a lot of features, follows elegant patterns, and is great to work with.

ä django-tastypie is a more mature API framework that implements its own class-based
view system. It’s a feature-rich, mature, powerful, stable tool for creating APIs from
Django models. It was created by Daniel Lindsley, the developer also behind django-
haystack, the most commonly used Django search library.

ä django-braces can be used in direct conjunction with Django CBVs to create super-
quick, super-simple one-off REST API views. e downside is that when you get into
the full range of HTTP methods such as PUT, it rapidly becomes a hindrance.

11.1 Fundamentals of Basic REST API Design

e Hypertext Transfer Protocol (HTTP) is a protocol for distributing content that provides a set of
methods to declare actions. By convention, REST APIs rely on these methods, so use the appropriate
HTTP method for each type of action:

Purpose of Request HTTP Method Rough SQL equivalent

105

Chapter 11: Building REST APIs in Django

Create a new resource POST INSERT

Read an existing resource GET SELECT

Request the header of an existing resource HEAD

Update an existing resource PUT UPDATE

Update part of an existing resource PATCH UPDATE

Delete an existing resource DELETE DELETE

Return the supported HTTP methods for the given
URL

OPTIONS

Echo back the request TRACE

Tunneling over TCP/IP (usually not implemented) CONNECT

Table 11.1: HTTP Methods

A couple of notes on the above:

ä If you’re implementing a read-only API, you might only need to implement GET methods.
ä If you’re implementing a read-write API you must at least also use POST, but should also

consider using PUT and DELETE.
ä By de nition, GET, PUT, and DELETE are idempotent. POST and PATCH are not.
ä PATCH is often not implemented, but it’s a good idea to implement it if your API supports

PUT requests.

Here are some common HTTP status codes that you should consider supporting when implementing
your REST API. Note that this is a partial list; a much longer list of status codes can be found at
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

HTTP Status Code Success/Failure Meaning

200 OK Success GET - Return resource
PUT - Provide status message or return resource

201 Created Success POST - Provide status message or return newly created
resource

204 No Content Success DELETE

106

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

11.2: Implementing a Simple JSON API

HTTP Status Code Success/Failure Meaning

304 Unchanged Redirect ANY - Indicates no changes since the last request. Used
for checking Last-Modified and Etag headers to improve
performance.

400 Bad Request Failure PUT, POST - Return error messages, including form
validation errors.

401 Unauthorized Failure ALL - Authentication required but user did not provide
credentials.

403 Forbidden Failure ALL - User attempted to access restricted content

404 Not Found Failure ALL - Resource is not found

405 Method Not Allowed Failure ALL - An invalid HTTP method was attempted.

Table 11.2: HTTP Status Codes

11.2 Implementing a Simple JSON API

Let’s use the avors app example from previous chapters as our base, providing the capability to
create, read, update, and delete avors via HTTP requests using AJAX, python-requests, or some
other library. We’ll also use django-rest-framework, as it provides us with the capability to build a
REST API quickly using patterns similar to the class-based views we describe in previous chapters.
We’ll begin by listing the Flavor model again:

..

E .

flavors/models.py
from django.core.urlresolvers import reverse
from django.db import models

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse("flavor_detail", kwargs={"slug": self.slug})

107

Chapter 11: Building REST APIs in Django

Now let’s add in some views:

..

E .

from rest_framework.generics import (
ListCreateAPIView,
RetrieveUpdateDestroyAPIView

)

from .models import Flavor

class FlavorCreateReadView(ListCreateAPIView):
model = Flavor

class FlavorReadUpdateDeleteView(RetrieveUpdateDestroyAPIView):
model = Flavor

We’re done! Wow, that was fast!

..

WARNING: Our Simple API Does Not Use Permissions

.

If you implement an API using our example, don’t forget to authenticate users and assign
them permissions appropriately!

Now we’ll wire this into our avors/urls.py module:

..

E .

flavors/urls.py
from django.conf.urls.defaults import patterns, url

from flavors import views

urlpatterns = patterns("",
url(

regex=r"ˆapi/$",
view=views.FlavorCreateReadView.as_view(),
name="flavor_rest_api"

),

108

11.2: Implementing a Simple JSON API

..

url(
regex=r"ˆapi/(?P<slug>[-\w]+)/$",
view=views.FlavorReadUpdateDeleteView.as_view(),
name="flavor_rest_api"

)
)

What we are doing is reusing the same view and URLConf name, making it easier to manage when
you have a need for a JavaScript-heavy front-end. All you need to do is access the Flavor resource via
the {% url %} template tag. In case it’s not clear exactly what our URLConf is doing, let’s review
it with a table:

Url View Url Name (same)

/flavors/api/ FlavorCreateReadView flavor rest api

/flavors/api/:slug/ FlavorReadUpdateDeleteView flavor rest api

Table 11.3: URLConf for the Flavor REST APIs

e end result is the traditional REST-style API de nition:

..

E .

flavors/api/
flavors/api/:slug/

.....

TIP: Common syntax for describing REST APIs

.

It’s not uncommon to see syntax like what is described in Example 11.4. In this particular
case, (/ avors/api/:slug/) includes a (:slug) value. is represents a variable, but in a manner
suited for documentation across frameworks and languages, and you’ll see it used in many
third-party REST API descriptions.

We’ve shown you (if you didn’t know already) how it’s very easy to build REST APIs in Django, now

109

Chapter 11: Building REST APIs in Django

let’s go over some advice on maintaining and extending them.

11.3 REST API Architecture

Building quick APIs is easy with tools like django-rest-framework and django-tastypie, but extending
and maintaining them to match your project’s needs takes a bit more thought.

11.3.1 Code for an App Should Remain in the App

When it comes down to it, REST APIs are just views. In our opinion, REST API views should
go into views.py modules and follow the same guidelines we endorse when it comes to any other
view. e same goes for app or model speci c serializers and renderers. If you do have app speci c
serializers or renderers the same applies.

11.3.2 Try to Keep Business Logic Out of API Views

It’s a good idea to try to keep as much logic as possible out of API views. If this sounds familiar,
it should. We covered this in ‘Try to Keep Business Logic out of Views’, chapter 7 Function- and
Class-Based Views, and API views are just another type of view, after all.

11.3.3 Grouping API URLs

If you have REST API views in multiple Django apps, how do you build a project-wide API that
looks like this?

..

E .

api/flavors/ # GET, POST
api/flavors/:slug/ # GET, PUT, DELETE
api/users/ # GET, POST
api/users/:slug/ # GET, PUT, DELETE

110

11.3: REST API Architecture

In the past, we placed all API view code into a dedicated Django app called api or apiv1, with custom
logic in some of the REST views, serializers, and more. In theory it’s a pretty good approach, but in
practice it means we have logic for a particular app in more than just one location.

Our current approach is to lean on URL con guration. When building a project-wide API we
write the REST views in the views.py modules, wire them into a URLConf called something like
core/api.py or core/apiv1.py and include that from the project root’s urls.py module. is means that
we might have something like the following code:

..

E .

core/api.py
""" Called from the project root's urls.py URLConf thus:

url(r"ˆapi/", include("core.api"), namespace="api"),
"""
from django.conf.urls.defaults import patterns, url

from flavors import views as flavor_views
from users import views as user_views

urlpatterns = patterns("",
{% url "api:flavors" %}
url(

regex=r"ˆflavors/$",
view=flavor_views.FlavorCreateReadView.as_view(),
name="flavors"

),
{% url "api:flavors" flavor.slug %}
url(

regex=r"ˆflavors/(?P<slug>[-\w]+)/$",
view=flavor_views.FlavorReadUpdateDeleteView.as_view(),
name="flavors"

),
{% url "api:users" %}
url(

regex=r"ˆusers/$",
view=user_views.UserCreateReadView.as_view(),
name="users"

),

111

Chapter 11: Building REST APIs in Django

..

{% url "api:users" user.slug %}
url(

regex=r"ˆusers/(?P<slug>[-\w]+)/$",
view=user_views.UserReadUpdateDeleteView.as_view(),
name="users"

),
)

11.3.4 Test Your API

We nd that Django’s test suite makes it really easy to test API implementations. It’s certainly much
easier than staring at curl results! Testing is covered at length in chapter 18, Testing Stinks and Is a
Waste of Money!, and we even include in that chapter the tests we wrote for our simple JSON API
(see subsection 18.3.1).

11.4 AJAX and the CSRF Token

If you use AJAX with Django, you may discover that triggering the CSRF token validation blocks
your ability to use your API.

11.4.1 Posting Data via AJAX

Django’s CSRF protection seems like an inconvenience when writing AJAX. However, if you’re using
jQuery then you can just create a csrf.js and use the following on any page with AJAX that is updating
data.

..

E .

// Place at /static/js/csrf.js
// using jQuery
function csrfSafeMethod(method) {

// These HTTP methods do not require CSRF protection
return (/ˆ(GET|HEAD|OPTIONS|TRACE)$/.test(method));

112

11.4: AJAX and the CSRF Token

..

}
$.ajaxSetup({

crossDomain: false, // Obviates need for sameOrigin test
beforeSend: function(xhr, settings) {

if (!csrfSafeMethod(settings.type)) {
xhr.setRequestHeader("X-CSRFToken", csrftoken);

}
}

});

..

WARNING: This Works Only for jQuery 1.5+

.

is JavaScript will not work with versions of jQuery before 1.5. Please read the CSRF
documentation speci c for other versions of Django.

Now let’s include the JavaScript on a page which has a ice cream shopping cart form for ordering ice
cream:

..

E .

{% extends "base.html" %}
{% load static %}

{% block title %}Ice Cream Shopping Cart{% endblock %}

{% block content %}
<h1>Ice Cream Shopping Cart</h1>
<div class="shopping-cart"></div>

{% endblock %}

{% block javascript %}
{{ block.super }}
<script type="text/javascript"

src="{% static "js/csrf.js" %}"></script>
<script type="text/javascript"

src="{% static "js/shopping_cart.js" %}"></script>

113

Chapter 11: Building REST APIs in Django

..{% endblock %}

Recommended reading:

ä https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

11.5 Additional Reading

We highly recommend reading the following:

ä http://en.wikipedia.org/wiki/REST
ä http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
ä http://jacobian.org/writing/rest-worst-practices/
ä http://paltman.com/2012/04/30/integration-backbonejs-tastypie/

11.6 Summary

In this chapter we covered:

ä API Creation Libraries.
ä Grouping Strategies
ä Fundamentals of Basic REST API Design.
ä Implementing a Simple JSON API.
ä AJAX and CSRF tokens.

In the next chapter we’ll switch back to HTML rendering via templates.

114

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://jacobian.org/writing/rest-worst-practices/
http://paltman.com/2012/04/30/integration-backbonejs-tastypie/

12 | Templates: Best Practices

One of Django’s early design decisions was to limit the functionality of the template language. is
heavily constrains what can be done with Django templates, which is actually a very good thing since
it forces us to keep business logic in the Python side of things.

ink about it: the limitations of Django templates force us to put the most critical, complex and
detailed parts of our project into .py les rather than into template les. Python happens to be one of
the most clear, concise, elegant programming languages of the planet, so why would we want things
any other way?

12.1 Follow a Minimalist Approach

We recommend taking a minimalist approach to your template code. Treat the so-called limitations
of Django templates as a blessing in disguise. Use those constraints as inspiration to nd simple,
elegant ways to put more of your business logic into Python code rather than into templates.

Taking a minimalist approach to templates also makes it much easier to adapt your Django apps to
changing format types. When your templates are bulky and full of nested looping, complex con-
ditionals, and data processing, it becomes harder to reuse business logic code in templates, not to
mention impossible to use the same business logic in template-less views such as API views. Struc-
turing your Django apps for code reuse is especially important as we move forward into the era of
increased API development, since APIs and web pages often need to expose identical data with
different formatting.

To this day, HTML remains a standard expression of content, and therein lies the practices and
patterns for this chapter.

115

Chapter 12: Templates: Best Practices

12.2 Template Architecture Patterns

We’ve found that for our purposes, simple 2-tier or 3-tier template architectures are ideal. e dif-
ference in tiers is how many levels of template extending needs to occur before content in apps is
displayed. See the examples below:

12.2.1 2-Tier Template Architecture Example

With a 2-tier template architecture, all templates inherit from a single root base.html le.

..

E .

templates/
base.html
dashboard.html # extends base.html
profiles/

profile_detail.html # extends base.html
profile_form.html # extends base.html

is is best for sites with a consistent overall layout from app to app.

12.2.2 3-Tier Template Architecture Example

With a 3-tier template architecture:

ä Each app has a base <app name>.html template. App-level base templates share a common
parent base.html template.

ä Templates within apps share a common parent base <app name>.html template.
ä Any template at the same level as base.html inherits base.html .

..

E .

templates/
base.html
dashboard.html # extends base.html
profiles/

116

12.2: Template Architecture Patterns

..
base_profiles.html # extends base.html
profile_detail.html # extends base_profile.html
profile_form.html # extends base_profile.html

e 3-tier architecture is best for websites where each section requires a distinctive layout. For exam-
ple, a news site might have a local news section, a classi ed ads section, and an events section. Each
of these sections requires its own custom layout.

is is extremely useful when we want HTML to look or behave differently for a particular section
of the site that groups functionality.

12.2.3 Flat Is Better Than Nested

Figure 12.1: An excerpt from the Zen of Ice Cream.

Complex template hierarchies make it exceedingly difficult to debug, modify, and extend HTML
pages and tie in CSS styles. When template block layouts become unnecessarily nested, you end up
digging through le after le just to change, say, the width of a box.

Giving your template blocks as shallow an inheritance structure as possible will make your templates
easier to work with and more maintainable. If you’re working with a designer, your designer will
thank you.

117

Chapter 12: Templates: Best Practices

at being said, there’s a difference between excessively-complex template block hierarchies and tem-
plates that use blocks wisely for code reuse. When you have large, multi-line chunks of the same or
very similar code in separate templates, refactoring that code into reusable blocks will make your code
more maintainable.

e Zen of Python includes the aphorism “Flat is better than nested” for good reason. Each level of
nesting adds mental overhead. Keep that in mind when architecting your Django templates.

.....

TIP: The Zen of Python

.

At the command line, do the following:

python -c `import this'

What you’ll see is the Zen of Python, an eloquently-expressed set of guiding principles for the
design of the Python programming language.

12.3 Limit Processing in Templates

e less processing you try to do in your templates, the better. is is particularly a problem when it
comes to queries and iteration performed in the template layer.

Whenever you iterate over a queryset in a template, ask yourself the following questions:

..
1 How large is the queryset? Looping over gigantic querysets in your templates is almost always

a bad idea.
..
2 How large are the objects being retrieved? Are all the elds needed in this template?
..
3 During each iteration of the loop, how much processing occurs?

If any warning bells go off in your head, then there’s probably a better way to rewrite your template
code.

118

12.3: Limit Processing in Templates

..

WARNING: Why Not Just Cache?

.

Sometimes you can just cache away your template inefficiencies. at’s ne, but before you
cache, you should rst try to attack the root of the problem.
You can save yourself a lot of work by mentally tracing through your template code, doing
some quick run time analysis, and refactoring.

Let’s now explore some examples of template code that can be rewritten more efficiently.

Suspend your disbelief for a moment and pretend that the nutty duo behind Two Scoops ran a 30-
second commercial during the Superbowl. “Free pints of ice cream for the rst million developers
who request them! All you have to do is ll out a form to get a voucher redeemable in stores!”

Naturally, we have a “vouchers” app to track the names and email addresses of everyone who requested
a free pint voucher. Here’s what the model for this app looks like:

..

E .

vouchers/models.py
from django.core.urlresolvers import reverse
from django.db import models
from .managers import VoucherManager

class Voucher(models.Model):
""" Vouchers for free pints of ice cream """
name = models.CharField(max_length=100)
email = models.EmailField()
address = models.TextField()
birth_date = models.DateField(blank=True)
sent = models.BooleanField(default=False)
redeemed = models.BooleanField(default=False)

objects = VoucherManager()

is model will be used in the following examples to illustrate a few “gotchas” that you should avoid.

119

Chapter 12: Templates: Best Practices

12.3.1 Gotcha 1: Aggregation in Templates

Since we have birth date information, it would be interesting to display a rough breakdown by age
range of voucher requests and redemptions.

A very bad way to implement this would be to do all the processing at the template level. To be more
speci c in the context of this example:

ä Don’t iterate over the entire voucher list in your template’s JavaScript section, using JavaScript
variables to hold age range counts.

ä Don’t use the add template lter to sum up the voucher counts.

ose implementations are ways of getting around Django’s limitations of logic in templates, but
they’ll slow down your pages drastically.

e better way is to move this processing out of your template and into your Python code. Sticking
to our minimal approach of using templates only to display data that has already been processed, our
template looks like this:

..

E .

{# templates/vouchers/ages.html #}
{% extends "base.html" %}

{% block content %}
<table>

<thead>
<tr>

<th>Age Bracket</th>
<th>Number of Vouchers Issued</th>

</tr>
</thead>
<tbody>

{% for age_bracket in age_brackets %}
<tr>

<td>{{ age_bracket.title }}</td>
<td>{{ age_bracket.count }}</td>

</tr>
{% endfor %}

120

12.3: Limit Processing in Templates

..
</tbody>

</table>
{% endblock content %}

In this example, we can do the processing with a model manager, using the Django ORM’s aggre-
gation methods and the handy dateutil library described in Appendix A: Packages Mentioned In is
Book:

..

E .

vouchers/managers.py
from datetime import datetime

from dateutil.relativedelta import relativedelta

from django.db import models

class VoucherManager(models.Manager):
def age_breakdown(self):

""" Returns a dict of age brackets/counts """
age_brackets = []
now = datetime.now()

delta = now - relativedelta(years=18)
count = self.model.objects.filter(birth_date__gt=delta).count()
age_brackets.append(

{"title": "0-17", "count": count}
)
count = self.model.objects.filter(

birth_date__lte=delta
).count()

age_brackets.append(
{"title": "18+", "count": count}

)
return age_brackets

121

Chapter 12: Templates: Best Practices

is method would be called from a view, and the results would be passed to the template as a context
variable.

12.3.2 Gotcha 2: Filtering With Conditionals in Templates

Suppose we want to display a list of all the Greenfelds and the Roys who requested free pint vouchers,
so that we could invite them to our family reunion. We want to lter our records on the name eld.

A very bad way to implement this would be with giant loops and if statements at the template level.

..

B E .

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if "greenfeld" in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in voucher_list %}

{# Don't do this: conditional filtering in templates #}
{% if "roy" in voucher.name.lower %}

{{ voucher.name }}
{% endif %}

{% endfor %}

In this bad snippet, we’re looping and checking for various “if ” conditions. at’s ltering a poten-
tially gigantic list of records in templates, which is not designed for this kind of work, and will cause
performance bottlenecks. On the other hand, databases like PostgreSQL and MySQL are great at
ltering records, so this should be done at the database layer. e Django ORM can help us with

this as demonstrated in the next example.

122

12.3: Limit Processing in Templates

..

E .

vouchers/views.py
from django.views.generic import TemplateView

from .models import Voucher

class GreenfeldRoyView(TemplateView):
template_name = "vouchers/views_conditional.html"

def get_context_data(self, **kwargs):
context = super(GreenfeldRoyView, self).get_context_data(**kwargs)
context["greenfelds"] = \

Voucher.objects.filter(name__icontains="greenfeld")
context["roys"] = Voucher.objects.filter(name__icontains="roys")
return context

en to call the results, we use the following, simpler template:

..

E .

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in greenfelds %}

{{ voucher.name }}
{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in roys %}

{{ voucher.name }}
{% endfor %}

It’s easy to speed up this template by moving the ltering to a model manager. With this change, we
now simply use the template to display the already- ltered data.

123

Chapter 12: Templates: Best Practices

e above template now follows our preferred minimalist approach.

12.3.3 Gotcha 3: Complex Implied Queries in Templates

Despite the limitations on logic allowed in Django templates, it’s all too easy to nd ourselves calling
unnecessary queries repeatedly in a view. For example, if we list users of our site and all their avors
this way:

..

B E .

{# list generated via User.object.all() #}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{# DON'T DO THIS: Generated implicit query per user #}
{{ user.flavor.title }}
{# DON'T DO THIS: Second implicit query per user!!! #}
{{ user.flavor.scoops_remaining }}

{% endfor %}

en calling each user generates a second query. While that might not seem like much, we are certain
that if we had enough users and made this mistake frequently enough, our site would have a lot of
trouble.

One quick correction is to use the Django ORM’s select related() method:

..

E .

{# list generated via User.object.all().select_related() #}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:

124

12.3: Limit Processing in Templates

..

{{ user.flavor.title }}

{% endfor %}

One more thing: If you’ve embraced using model methods, the same applies. Be cautious putting too
much query logic in the model methods called from templates.

12.3.4 Gotcha 4: Hidden CPU Load in Templates

Watch out for innocent-looking calls in templates that result in intensive CPU processing. Although
a template might look simple and contain very little code, a single line could be invoking an object
method that does a lot of processing.

Figure 12.2: Bubble gum ice cream looks easy to eat but requires a lot of processing.

Common examples are template tags that manipulate images, such as the template tags provided by
libraries like sorl-thumbnail. In many cases tools like this work great, but we’ve had some issues.
Speci cally, the manipulation and the saving of image data to le systems (often across networks)
inside a template means there is a chokepoint within templates.

is is why projects that handle a lot of image or data processing increase the performance of their
site by taking the image processing out of templates and into views, models, helper methods, or
asynchronous messages queues like Celery.

125

Chapter 12: Templates: Best Practices

12.3.5 Gotcha 5: Hidden REST API Calls in Templates

You saw in the previous gotcha how easy it is to introduce template loading delays by accessing object
method calls. is is true not just with high-load methods, but also with methods that contain REST
API calls. A good example is querying an unfortunately slow maps API hosted by a third-party
service that your project absolutely requires. Don’t do this in the template code by calling a method
attached to an object passed into the view’s context.

Where should actual REST API consumption occur? We recommend doing this in:

ä JavaScript code so after your project serves out its content, the client’s browser handles the
work. is way you can entertain or distract the client while they wait for data to load.

ä e view’s Python code where slow processes might be handled in a variety of ways including
message queues, additional threads, multiprocesses, or more.

12.4 Don't BotherMaking Your GeneratedHTML Pretty

Bluntly put, no one cares if the HTML generated by your Django project is attractive. In fact, if
someone were to look at your rendered HTML, they’d do so through the lens of a browser inspector,
which would realign the HTML spacing anyway. erefore, if you shuffle up the code in your Django
templates to render pretty HTML, you are wasting time obfuscating your code for an audience of
yourself.

And yet, we’ve seen code like the following. is evil code snippet generates nicely formatted HTML
but itself is an illegible, unmaintainable template mess:

..

B E .

{% comment %}Don't do this! This code bunches everything
together to generate pretty HTML.
{% endcomment %}
{% if list_type=="unordered" %}{% else %}{% endif %}{% for
syrup in syrup_list %}<li class="{{ syrup.temperature_type|roomtemp
}}">{% syrup.title %}
{% endfor %}{% if list_type=="unordered" %}{% else %}
{% endif %}

126

12.5: Exploring Template Inheritance

A better way of writing the above snippet is to use indentation and one operation per line to create
a readable, maintainable template:

..

E .

{# Use indentation/comments to ensure code quality #}
{# start of list elements #}
{% if list_type=="unordered" %}

{% else %}

{% endif %}

{% for syrup in syrup_list %}
<li class="{{ syrup.temperature_type|roomtemp }}">

{% syrup.title %}

{% endfor %}

{# end of list elements #}
{% if list_type=="unordered" %}

{% else %}

{% endif %}

Are you worried about the volume of whitespace generated? Don’t be. First of all, experienced de-
velopers favor readability of code over obfuscation for the sake of optimization. Second, there are
compression and mini cation tools that can help more than anything you can do manually here. See
chapter 20, Finding and Reducing Bottlenecks, for more details.

12.5 Exploring Template Inheritance

Let’s begin with a simple base.html le that we’ll inherit from another template:

127

Chapter 12: Templates: Best Practices

..

E .

{# simple base.html #}
{% load staticfiles %}
<html>
<head>

<title>
{% block title %}Two Scoops of Django{% endblock title %}

</title>
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static "css/project.css" %}">

{% endblock stylesheets %}
</head>
<body>

<div class="content">
{% block content %}

<h1>Two Scoops</h1>
{% endblock content %}

</div>
</body>
</html>

e base.html le contains the following features:

ä A title block containing: “Two Scoops of Django”.
ä A stylesheets block containing a link to a project.css le used across our site.
ä A content block containing “<h1>Two Scoops</h1>”.

Our example relies on just three template tags, which are summarized below:

Template Tag Purpose

{% load %} Loads the staticfiles built-in template tag library

{% block %}
Since base.html is a parent template, these define which child blocks can be filled in by
child templates. We place links and scripts inside them so we can override if necessary.

{% static %} Resolves the named static media argument to the static media server.

128

12.5: Exploring Template Inheritance

Table 12.1: Template Tags in base.html

To demonstrate base.html in use, we’ll have a simple about.html inherit the following from it:

ä A custom title.
ä e original stylesheet and an additional stylesheet.
ä e original header, a sub header, and paragraph content.
ä e use of child blocks.
ä e use of the {{ block.super }} template variable.

..

E .

{% extends "base.html" %}
{% load staticfiles %}
{% block title %}About Audrey and Daniel{% endblock %}
{% block stylesheets %}

{{ block.super }}
<link rel="stylesheet" type="text/css"

href="{% static "css/about.css" %}">
{% endblock stylesheets %}
{% block content %}

{{ block.super }}
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

{% endblock %}

When we render this template in a view, it generates the following HTML:

..

E .

<html>
<head>

<title>
About Audrey and Daniel

</title>
<link rel="stylesheet" type="text/css"

href="/static/css/project.css">

129

Chapter 12: Templates: Best Practices

..

<link rel="stylesheet" type="text/css"
href="/static/css/about.css">

</head>
<body>

<div class="content">
<h1>Two Scoops</h1>
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

</div>
</body>
</html>

Notice how the rendered HTML has our custom title, the additional stylesheet link, and more ma-
terial in the body?

We’ll use the table below to review the template tags and variables in the about.html template.

Template Object Purpose

{% extends %} Informs Django that about.html is inheriting or extending from base.html

{% block %}
Since about.html is a child template, block overrides the content provided by
base.html. For example, this means our title will render as <title>Audrey and
Daniel</title>.

{{ block.super }}
When placed in a child template's block, it ensures that the parent's content is also
included in the block. For example, in the content block of the about.html
template, this will render <h1>Two Scoops</h1>.

Table 12.2: Template Objects in about.html

Note that the {% block %} tag is used differently in about.html than in base.html , serving to over-
ride content. In blocks where we want to preserve the base.html content, we use {{ block.super
}} variable to display the content from the parent block. is brings us to the next topic, {{
block.super }}.

130

12.6: block.super Gives the Power of Control

12.6 block.super Gives the Power of Control

Let’s imagine that we have a template which inherits everything from the base.html but replaces the
projects’ link to the project.css le with a link to dashboard.css. is use case might occur when you
have a project with one design for normal users, and a dashboard with a different design for staff.

If we aren’t using {{ block.super }}, this often involves writing a whole new base le, often named
something like base dashboard.html . For better or for worse, we now have two template architectures
to maintain.

If we are using {{ block.super }}, we don’t need a second (or third or fourth) base template.
Assuming all templates extend from base.html we use {{ block.super }} to assume control of
our templates. Here are three examples:

Template using both project.css and a custom link:

..

E .

{% extends "base.html" %}
{% block stylesheets %}

{{ block.super }} {# this brings in project.css #}
<link rel="stylesheet" type="text/css"

href="{% static "css/custom" %}" />
{% endblock %}

Dashboard template that excludes the project.css link:

..

E .

{% extends "base.html" %}
{% block stylesheets %}

<link rel="stylesheet" type="text/css"
href="{% static "css/dashboard.css" %}" />

{% comment %}
By not using {{ block.super }}, this block overrides the
stylesheet block of base.html

{% endcomment %}
{% endblock %}

131

Chapter 12: Templates: Best Practices

Template just linking the project.css le:

..

E .

{% extends "base.html" %}
{% comment %}

By not using {% block stylesheets %}, this template inherits the
stylesheets block from the base.html parent, in this case the
default project.css link.

{% endcomment %}

ese three examples demonstrate the amount of control block.super provides. e variable serves
a good way to reduce template complexity, but can take a little bit of effort to fully comprehend.

.....

TIP: block.super is similar but not the same as super()

.

For those coming from an object oriented programming background, it might help to think
of the behavior of the {{ block.super }} variable to be like a very limited version of the
Python built-in function, super(). In essence, the {{ block.super }} variable and the
super() function both provide access to the parent.
Just remember that they aren’t the same. For example, the {{ block.super }} variable
doesn’t accept arguments. It’s just a nice mnemonic that some developers might nd useful.

12.7 Useful Things to Consider

e following are a series of smaller things we keep in mind during template development.

12.7.1 Avoid Coupling Styles Too Tightly to Python Code

Aim to control the styling of all rendered templates entirely via CSS and JS.

Use CSS for styling whenever possible. Never hardcode things like menu bar widths and color choices
into your Python code. Avoid even putting that type of styling into your Django templates.

Here are some tips:

132

12.7: Useful ings to Consider

ä If you have magic constants in your Python code that are entirely related to visual design layout,
you should probably move them to a CSS le.

ä e same applies to JavaScript.

12.7.2 Common Conventions

Here are some naming and style conventions that we recommend:

ä We prefer underscores over dashes in template names, block names, and other names in tem-
plates. Most Django users seem to follow this convention. Why? Well, because underscores
are allowed in names of Python objects but dashes are forbidden.

ä We rely on clear, intuitive names for blocks. {% block javascript %} is good.
ä We include the name of the block tag in the endblock. Never write just {% endblock %},

include the whole {% endblock javascript %}.
ä Templates called by other templates are pre xed with ‘ ’. is applies to templates called via

{% includes %} or custom template tags. It does not apply to templates inheritance controls
such as {% extends %} or {% block %}.

12.7.3 Location, Location, Location!

Templates should usually go into the root of the Django project, at the same level as the apps. is
is the most common convention, and it’s an intuitive, easy pattern to follow.

e only exception is when you bundle up an app into a third-party package. at packages template
directory should go into app directly. We’ll explore this in section 17.9, How to Release Your Own
Django Packages.

12.7.4 Use Named Context Objects

When you use generic display CBVs, you have the option of using the generic {{ object list }}
and {{ object }} in your template. Another option is to use the ones that are named after your
model.

133

Chapter 12: Templates: Best Practices

For example, if you have a Topping model, you can use {{ topping list }} and {{ topping
}} in your templates, instead of {{ object list }} and {{ object }}. is means both of the
the following template examples will work:

..

E .

{# toppings/topping_list.html #}
{# Using implicit names #}

{% for object in object_list %}

{{ object }}
{% endfor %}

{# Using explicit names #}

{% for topping in topping_list %}

{{ topping }}
{% endfor %}

12.7.5 Use URL Names Instead of Hardcoded Paths

A common developer mistake is to hardcode URLs in templates like this:

..
B E .

e problem with this is that if the URL patterns of the site need to change, all the URLs across the
site need to be addressed. is impacts HTML, JavaScript, and even RESTful APIs.

Instead, we use the {% url %} tag and references the names in our URLConf les:

..
E .

134

12.8: Summary

12.7.6 Debugging Complex Templates

A trick recommended by Lennart Regebro is that when templates are complex and it becomes dif-
cult to determine where a variable is failing, you can force more verbose errors through the use of

the TEMPLATE STRING IF INVALID setting:

..

E .

settings/local.py
TEMPLATE_STRING_IF_INVALID = "INVALID EXPRESSION: %s"

12.7.7 Don't Replace the Django Template Engine

If you need Jinja2 or any other templating engine for certain views, then it’s easy enough to use it
for just those views without having to replace Django templates entirely.

For more details, see chapter 14, Tradeoffs of Replacing Core Components, for a case study about re-
placing the Django template engine with Jinja2.

12.8 Summary

In this chapter we covered the following:

ä Template inheritance including the use of {{ block.super }}.
ä Writing legible, maintainable templates.
ä Easy methods to optimize template performance.
ä Covered issues with limitations of template processing.

In the next chapter we’ll examine template tags and lters.

135

Chapter 12: Templates: Best Practices

136

13 | Template Tags and Filters

Django provides dozens of default template tags and lters, all of which share the following common
traits:

ä All of the defaults have clear, obvious names.
ä All of the defaults do just one thing.
ä None of the defaults alter any sort of persistent data.

ese traits serve as very good best practices when you have to write your own template tags. Let’s
now dive a bit deeper into practices and recommendations when writing custom lters and template
tags.

13.1 Filters Are Functions

Filters are functions that accept just one or two arguments, and that don’t give developers the ability
to add behavior controls in Django templates.

We feel that this simplicity makes lters are less prone to abuse, since they are essentially just functions
with decorators that make Python usable inside of Django templates. is means that they can be
called as normal functions (although we prefer to have our lters call functions imported from helper
modules).

In fact, a quick scan of the source code of Django’s default lters at
http://2scoops.co/slugify-source shows that the slugify() function simply calls the
from django.utils.text.slugify function.

137

http://2scoops.co/slugify-source

Chapter 13: Template Tags and Filters

13.1.1 Filters Are Easy to Test

Testing a lter is just a matter of testing a function, which we cover in chapter 18, Testing Stinks and
Is a Waste of Money!.

13.1.2 Filters, Code Reuse, and Performance

It’s no longer necessary to import django.template.defaultfilters.slugify. Instead use
django.utils.text.slugify. While it might seem to be perfectly acceptable, since
django.template.defaultfilters.slugify performs an import each time it’s used, it can
turn into a performance bottleneck.

Similarly, remove tags is available at django.utils.html.remove tags().

Since lters are just functions, we advocate that anything but the simplest logic for them be moved
to more reusable utility functions, perhaps stored in a utils.py module. Doing this makes it easier to
introspect code bases and test, and can mean dramatically fewer imports.

13.1.3 When to Write Filters

Filters are good for modifying the presentation of data, and they can be readily reused in REST APIs
and other output formats. Being constrained to two arguments limits the functionality so it’s harder
(but not impossible) to make them unbearably complex.

13.2 Custom Template Tags

“Please stop writing so many template tags. ey are a pain to debug.”

– Audrey Roy, while debugging Daniel Greenfeld’s code.

While template tags are great tools when developers have the discipline to keep them in check, in
practice they tend to get abused. is section covers the problems that you run into when you put
too much of your logic into template tags and lters.

138

13.2: Custom Template Tags

13.2.1 Template Tags Are Harder To Debug

Template tags of any complexity can be challenging to debug. When they include opening and closing
elements, they become even harder to handle. We’ve found liberal use of log statements and tests are
very helpful when they become hard to inspect and correct.

13.2.2 Template Tags Make Code Reuse Harder

It can be difficult to consistently apply the same effect as a template tag on alternative output formats
used by REST APIs, RSS feeds, or in PDF/CSV generation. If you do need to generate alternate
formats, it’s worth considering putting all logic for template tags into utils.py, for easy access from
other views.

13.2.3 The Performance Cost of Template Tags

Template tags can have a signi cant performance cost, especially when they load other templates.
While templates run much faster than they did in previous versions of Django, it’s easy to lose those
performance bene ts if you don’t have a deep understanding of how templates are loaded in Django.

If your custom template tags are loading a lot of templates, you might want to consider caching the
loaded templates. See http://2scoops.co/1.5-template-cached-loader for more details.

13.2.4 When to Write Template Tags

ese days, we’re very cautious about adding new template tags. We consider two things before
writing them:

ä Anything that causes a read/write of data might be better placed in a model or object method.
ä Since we implement a consistent naming standard across our projects, we can add an abstract

base class model to our core.models module. Can a method or property in our project’s abstract
base class model do the same work as a custom template tag?

139

http://2scoops.co/1.5-template-cached-loader

Chapter 13: Template Tags and Filters

When should you write new template tags? We recommend writing them in situations where they are
only responsible for rendering of HTML. For example, Projects with very complex HTML layouts
with many different models or data types might use them to create a more exible, understandable
template architecture.

.....

PACKAGE TIP: We Do Use Custom Template Tags

.

It sounds like we stay away from custom template tags, but that’s not the case. We’re just cau-
tious. Interestingly enough, Daniel has been involved with at least three prominent libraries
that make extensive use of template tags.

ä django-crispy-forms
ä django-wysiwyg
ä django-uni-form (deprecated, use django-crispy-forms instead)

13.3 Naming Your Template Tag Libraries

e convention we follow is <app name> tags.py. Using the twoscoops example, we would have les
named thus:

ä avors tags.py
ä blog tags.py
ä events tags.py
ä tickets tags.py

is makes determining the source of a template tag library trivial to discover.

..

WARNING: Don't name your template tag libraries with the
same name as your app

.

For example, naming the events app’s templatetag library events.py is problematic.
is will cause all sorts of problems because of the way that Django loads template tags. If

you do this, expect things to break.

140

13.4: Loading Your Template Tag Modules

..

WARNING: Don't Use Your IDE's Features as an Excuse to Ob-
fuscate Your Code

.

Do not rely on your text editor or IDE’s powers of introspection to determine the name of
your templatetag library.

13.4 Loading Your Template Tag Modules

In your template, right after {% extends "base.html" %} (or any other parent template besides
base.html) is where you load your template tags:

..

E .

{% extends "base.html" %}

{% load flavors_tags %}

Simplicity itself ! Explicit loading of functionality! Hooray!

13.4.1 Watch Out for This Crazy Anti-Pattern

Unfortunately, there is an obscure anti-pattern that will drive you mad with fury each and every time
you encounter it:

..

B E .

Don't use this code!
It's an evil anti-pattern!
from django import template
template.add_to_builtins(

"flavors.templatetags.flavors_tags"
)

e anti-pattern replaces the explicit load method described above with an implicit behavior which
supposedly xes a “Don’t Repeat Yourself ” (DRY) issue. However, any DRY “improvements” it
creates are destroyed by the following:

141

Chapter 13: Template Tags and Filters

ä It will add some overhead due to the fact this literally loads the template tag library into each
and every template loaded by django.template.Template. is means every inherited
template, template {% include %}, inclusion tag, and more will be impacted. While we
have cautioned against premature optimization, we are also not in favor of adding this much
unneeded extra computational work into our code when better alternatives exist.

ä Because the template tag library is implicitly loaded, it immensely adds to the difficulty in
introspection and debugging. Per the Zen of Python, “Explicit is better than Implicit.”

ä e add to builtins method has no convention for placement. To our chagrin, we often
nd it placed in an init module or the template tag library itself, either of which can cause

unexpected problems.

Fortunately, this is obscure because beginning Django developers don’t know enough to make this
mistake and experienced Django developers get really angry when they have to deal with it.

13.5 Summary

It is our contention that template tags and lters should concern themselves only with the manipu-
lation of presentable data. So long as we remember this when we write or use them, our projects run
faster and are easier to maintain.

142

14 | Tradeoffs of Replacing Core
Components

ere’s a lot of hype around swapping out core parts of Django’s stack for other pieces. Should you
do it?

Short Answer: Don’t do it. ese days, even Instagram says on Forbes.com that it’s completely
unnecessary: http://2scoops.co/instagram-insights

Long Answer: It’s certainly possible, since Django modules are simply just Python modules. Is it
worth it? Well, it’s worth it only if:

ä You are okay with sacri cing your ability to use third-party Django packages.
ä You have no problem giving up the powerful Django admin.
ä You have already made a determined effort to build your project with core Django com-

ponents, but you are running into walls that are major blockers.
ä You have already analyzed your own code to nd and x the root causes of your problems.

For example, you’ve done all the work you can to reduce the numbers of queries made in
your templates.

ä You’ve explored all other options including caching, denormalization, etc.
ä Your project is a real, live production site with tons of users. In other words, you’re certain

that you’re not just optimizing prematurely.
ä You’re willing to accept the fact that upgrading Django will be extremely painful or im-

possible going forward.

at doesn’t sound so great anymore, does it?

143

http://2scoops.co/instagram-insights

Chapter 14: Tradeoffs of Replacing Core Components

14.1 The Temptation to Build FrankenDjango

Every year, a new fad leads waves of developers to replace some particular core Django component.
Here’s a summary of some of the fads we’ve seen come and go.

Fad Reasons

Replacing the database/ORM
with a NoSQL database and
corresponding ORM
replacement.

Not okay: ``I have an idea for a social network for ice cream haters. I just
started building it last month. I need it to be web-scale!!!1!''

Okay: ``Our site has 50M users and I'm hitting the limits of what I can do with
indexes, query optimization, caching, etc. We're also pushing the limits of our
Postgres cluster. I've done a lot of research on this and am going to try storing
a simple denormalized view of our activity feed data in Redis to see if it
helps.''

Replacing Django's template
engine with Jinja2, Mako, or
something else.

Not okay: ``I read on Hacker News that Jinja2 is faster. I don't know anything
about caching or optimization, but I need Jinja2!''

Not okay: ``I hate having logic in Python modules. I just want logic in my
templates!''

Sometimes okay: ``I have a small number of views which generate 1MB+
HTML pages designed for Google to index!''

Table 14.1: Fad-based Reasons to Replace Components of Django

14.2 Case Study: Replacing theDjango Template Engine

Let’s take a closer look at one of the most common examples of replacing core Django components:
replacing the Django template engine with Jinja2.

14.2.1 Excuses, Excuses

e excuse for doing this used to be performance. at excuse is no longer quite as valid. A lot of work
has gone into improving the performance of Django’s templating system, and newer benchmarks

144

14.2: Case Study: Replacing the Django Template Engine

indicate that performance is greatly improved.

A common excuse for replacing the Django template engine is to give you more exibility. is is a
poor excuse because your template layer should be as thin as possible. Case in point, adding ‘ exibility’
to templates also means adding complexity.

14.2.2 What if I'm Hitting the Limits of Templates?

Are you really? You might just be putting your logic in the wrong places:

ä If you are putting tons of logic into templates, template tags, and lters, consider moving that
logic into model methods or helper utilities.

ä Whatever can’t be placed into model methods might go into views.
ä Template tags and lters should be a last resort. We covered this in more detail in chapter 13

‘Template Tags and Filters’.

14.2.3 What About My Unusual Use Case?

Okay, but what if I need to generate a 1 MB+ HTML page for Google to index?

Interestingly enough, this is the only use case we know of for replacing Django 1.5 templates. e
size of these pages can and will crash browsers, so it’s really meant for machines to read from each
other. ese giant pages require tens of thousands of loops to render the nal HTML, and this is a
place where Jinja2 (or other template engines) might provide a noticeable performance bene t.

However, besides these exceptions, we’ve found we don’t need Jinja2. So rather than replace Django
templates across the site, we use Jinja2 in only the affected view:

..

E .

flavors/views.py
import os
from django.conf import settings
from django.http import HttpResponse

from jinja2 import Environment, FileSystemLoader

145

Chapter 14: Tradeoffs of Replacing Core Components

..

from syrup.models import Syrup

JINJA2_TEMPLATES_DIR = os.path.join(
settings.PROJECT_ROOT,
"templates",
"jinja2"

)
JINJA2_LOADER = FileSystemLoader(JINJA2_TEMPLATES_DIR)
JINJA2_ENV = Environment(loader=JINJA2_LOADER)
TEMPLATE = JINJA2_ENV.get_template("big_syrup_list.html")

def big_syrup_list(request):
object_list = Syrup.objects.filter()
content = TEMPLATE.render(object_list=object_list)
return HttpResponse(content)

As we demonstrate, it’s pretty easy to bring in the additional performance of Jinja2 without removing
Django templates from a project.

14.3 Summary

Always use the right tool for the right job. We prefer to go with stock Django components, just like
we prefer using a scoop when serving ice cream. However, there are times when other tools make
sense.

Just don’t follow the fad of using a fork for ice cream!

146

15 | WorkingWith theDjangoAdmin

When people ask, “What are the bene ts of Django over other web frameworks?” the admin is what
usually comes to mind.

Imagine if every gallon of ice cream came with an admin interface. You’d be able to not just see the
list of ingredients, but also add/edit/delete ingredients. If someone was messing around with your
ice cream in a way that you didn’t like, you could limit or revoke their access.

Pretty surreal, isn’t it? Well, that’s what web developers coming from another background feel like
when they rst use the Django admin interface. It gives you so much power over your web application
automatically, with little work required.

15.1 It's Not for End Users

e Django admin interface is designed for site administrators, not end users. It’s a place for your
site administrators to add/edit/delete data and perform site management tasks.

Although it’s possible to stretch it into something that your end users could use, you really shouldn’t.
It’s just not designed for use by every site visitor.

15.2 Admin Customization vs. New Views

It’s usually not worth it to heavily customize the Django admin. Sometimes, creating a simple view
or form from scratch results in the same desired functionality with a lot less work.

We’ve always had better results with creating custom management dashboards for client projects than
we have with modifying the admin to t clients’ needs.

147

Chapter 15: Working With the Django Admin

15.3 Viewing String Representations of Objects

e default admin page for a Django app looks something like this:

Figure 15.1: Admin list page for an ice cream bar app.

at’s because the default string representation of an IceCreamBar object is “IceCreamBar object”.

It would be helpful to display something better here. We recommend that you do the following as
standard practice:

..
1 Always implement the unicode () method for each of your Django models. is will give

you a better default string representation in the admin and everywhere else.
..
2 If you want to change the admin list display in a way that isn’t quite a string representation of

the object, then use list display.

Implementing unicode () is simple:

..

E .

from django.db import models

class IceCreamBar(models.Model):

148

15.3: Viewing String Representations of Objects

..

name = models.CharField(max_length=100)
shell = models.CharField(max_length=100)
filling = models.CharField(max_length=100)
has_stick = models.BooleanField(default=True)

def __unicode__(self):
return self.name

e result:

Figure 15.2: Improved admin list page with better string representation of our objects.

It’s more than that, though. When you’re in the shell, you see the better string representation:

..

E .

>>> IceCreamBar.objects.all()
[<IceCreamBar: Vanilla Crisp>, <IceCreamBar: Mint Cookie Crunch>,
<IceCreamBar: Strawberry Pie>]

e unicode () method is called whenever you call unicode() on an object. is occurs in the

149

Chapter 15: Working With the Django Admin

Django shell, templates, and by extension the Django admin. erefore, try to make the results of
unicode () nice, readable representation of Django model instances.

Django also provides the unicode () method as a default if we don’t add a str () method.
In fact, in all our years working with Django, neither author has ever bothered writing a str ()
method.

If you still want to show data for additional elds on the app’s admin list page, you can then use
list display:

..

E .

from django.contrib import admin

from .models import IceCreamBar

class IceCreamBarAdmin(admin.ModelAdmin):
list_display = ("name", "shell", "filling",)

admin.site.register(IceCreamBar, IceCreamBarAdmin)

e result with the speci ed elds:

Figure 15.3: Improved admin list page with better string representation of our objects.

150

15.4: Adding Callables to ModelAdmin Classes

15.4 Adding Callables to ModelAdmin Classes

You can use callables such as methods and functions to add view functionality to the Django
django.contrib.admin.ModelAdmin class. is allows you to really modify the list and display
screens to suit your ice cream project needs.

For example, it’s not uncommon to want to see the exact URL of a model instance in the Django
admin. If you de ne a get absolute url() method for your model, what Django provides in the
admin is a link to a redirect view whose URL is very different from the actual object URL. Also, there
are cases where the get absolute url() method is meaningless (REST APIs come to mind).

In the example below, we demonstrate how to use a simple callable to provide a link to our target
URL:

..

E .

from django.contrib import admin
from django.core.urlresolvers import reverse

from icecreambars.models import IceCreamBar

class IceCreamBarAdmin(admin.ModelAdmin):

list_display = ("name", "shell", "filling",)
readonly_fields = ("show_url",)

def show_url(self, instance):
url = reverse("ice_cream_bar_detail",

kwargs={"pk": instance.pk})
response = """{0}""".format(url)
return response

show_url.short_description = "Ice Cream Bar URL"
Displays HTML tags
Never set allow_tags to True against user submitted data!!!
show_url.allow_tags = True

admin.site.register(IceCreamBar, IceCreamBarAdmin)

151

Chapter 15: Working With the Django Admin

Since a picture is worth a thousand words, here is what our callable does for us:

Figure 15.4: Displaying URL in the Django Admin.

..

WARNING: Use the allow tags attribute With Caution

.

e allow tags attribute, which is set to False by default, can be a security issue. When
allow tags is set to True, HTML tags are allowed to be displayed in the admin.
Our hard rule is allow tags can only be used on system generated data like primary keys,
dates, and calculated values. Data such as character and text elds are completely out, as is
any other user entered data.

15.5 Django's Admin Documentation Generator

One of the more interesting developer tools that Django provides is the
django.contrib.admindocs package. Created in an era before the advent of the docu-
mentation tools that we cover in chapter 19 Documentation: Be Obsessed, it remains a useful
tool.

It’s useful because it introspects the Django framework to display docstrings for project components
like models, views, custom template tags, and custom lters. Even if a project’s components don’t
contain any docstrings, simply seeing a list of harder-to-introspect items like oddly named custom

152

15.6: Securing the Django Admin and Django Admin Docs

template tags and custom lters can be really useful in exploring the architecture of a complicated,
existing application.

Using django.contrib.admindocs is easy, but we like to to reorder the steps described in the
formal documentation:

..
1 pip install docutils into your project’s virtualenv.
..
2 Add django.contrib.admindocs to your INSTALLED APPS.
..
3 Add (r'ˆadmin/doc/', include('django.contrib.admindocs.urls')) to your

root URLConf. Make sure it’s included before the r'ˆadmin/' entry, so that requests to
/admin/doc/ don’t get handled by the latter entry.

..
4 Optional : Linking to templates requires the ADMIN FOR setting to be con gured.
..
5 Optional : Using the admindocs bookmarklets requires the XViewMiddleware to be installed.

Once you have this in place, go to /admin/doc/ and explore. You may notice a lot of your
project’s code lacks any sort of documentation. is is addressed in the formal documentation on
django.contrib.admindocs: http://2scoops.co/1.5-admindocs and our own chapter on
chapter 19, Documentation: Be Obsessed.

15.6 Securing the Django Admin and Django Admin
Docs

It’s worth the effort to take the few extra steps to prevent hackers from accessing the admin, since
the admin gives you so much power over your site. See chapter 21, Security Best Practices for details,
speci cally the following sections:

ä section 21.15 ‘Securing the Django Admin’
ä section 21.16 ‘Securing Admin Docs’

15.7 Summary

In this chapter we covered the following:

ä Who should be using the Django admin.
ä When to use the Django admin and when to roll a new dashboard.
ä String representation of objects.

153

http://2scoops.co/1.5-admindocs

Chapter 15: Working With the Django Admin

ä Adding callables to Django admin classes.
ä Using Django’s admin docs.
ä Encouraging you to secure the Django admin.

154

16 | Dealing With the User Model

e best practices for this have changed signi cantly in Django 1.5. e “right way” before Django
1.5 was a bit confusing, and there’s still confusion around pre-1.5, so it’s especially important that
what we describe here is only applied to Django 1.5.

So let’s brie y go over best practices for Django 1.5 or higher.

16.1 Use Django's Tools for Finding the User Model

From Django 1.5 onwards, the advised way to get to the user class is as follows:

..

E .

Stock user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'django.contrib.auth.models.User'>

When the project has a custom user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class 'profiles.models.UserProfile'>

It is now possible to get two different Usermodel de nitions depending on the project con guration.
is doesn’t mean that a project can have two different User models; it means that every project can

customize its own Usermodel. is is new in Django 1.5 and a radical departure from earlier versions
of Django.

155

Chapter 16: Dealing With the User Model

16.1.1 Use settings.AUTH USER MODEL for Foreign Keys to User

From Django 1.5 onwards, the official preferred way to attach ForeignKey, OneToOneField, or
ManyToManyField to User is as follows:

..

E .

from django.conf import settings
from django.db import models

class IceCreamStore(models.Model):

owner = models.OneToOneField(settings.AUTH_USER_MODEL)
title = models.CharField(max_length=255)

Yes, it looks a bit strange, but that’s what the official Django docs advise.

Figure 16.1: is looks strange too.

16.2 CustomUser Fields for Projects Starting at Django
1.5

In Django 1.5, as long as you incorporate the necessary required methods and attributes, you can
create your own user model with its own elds. You can still do things the old pre-Django 1.5 way,
but you’re not stuck with having a User model with just email, first name, last name, and
username elds for identity.

156

16.2: Custom User Fields for Projects Starting at Django 1.5

..

WARNING: Migrating From Pre-1.5 User models to 1.5's Cus-
tom User Models.

.

At the time of writing, the best practices for this are still being determined. We suggest that
you carefully try out option #1 below, as it should work with a minimum of effort. For Django
1.5-style custom User model de nitions, we recommend option #2 and option #3 for new
projects only.

is is because custom User model de nitions for option #2 and option #3 adds new User
tables to the database that will not have the existing project data. Unless project-speci c steps
are taken to address matters, migration means ORM connections to related objects will be
lost.

When best practices for migrating between User model types have been established by the
community, we’ll publish errata and update future editions of this book. In the meantime,
we look forward to any suggestions for good practices or patterns to follow.

16.2.1 Option 1: Linking Back From a Related Model

is code is very similar to pre-Django 1.5 projects. You continue to use User (called preferably
via django.contrib.auth.get user model()) and keep your related elds in a separate model
(e.g. Profile). Here’s an example:

..

E .

from django.conf import settings
from django.db import models

class UserProfile(models.Model):

If you do this you need to either have a post_save signal or
redirect to a profile_edit view on initial login.
user = models.OneToOneField(settings.AUTH_USER_MODEL)
favorite_ice_cream = models.CharField(max_length=30)

157

Chapter 16: Dealing With the User Model

.....

TIP: For Now, You Can Still Use the user.get profile() Method.

.

e user.get profile() method is deprecated as of Django 1.5. Instead, we advise using
a standard Django ORM join instead, for example user.userprofile.favorite_ice_
cream.

16.2.2 Option 2: Subclass AbstractUser

Choose this option if you like Django’s User model elds the way they are, but need extra elds.

..

WARNING: Third-Party Packages Should Not Be Defining the
User Model

.

Unless the express purpose of the third-party package is to provide a new Usermodel, third-
party packages should never use option #2 to add elds to the User model.

Here’s an example of how to subclass AbstractUser:

..

E .

profiles/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models
from django.utils.translation import ugettext_lazy as _

class KarmaUser(AbstractUser):
karma = models.PositiveIntegerField(_("karma"),

default=0,
blank=True)

It’s much more elegant than the pre-1.5 way, isn’t it?

e other thing you have to do is set this in your settings:

158

16.2: Custom User Fields for Projects Starting at Django 1.5

..
E .

AUTH_USER_MODEL = "profiles.KarmaUser"

16.2.3 Option 3: Subclass AbstractBaseUser

AbstractBaseUser is the bare-bones option with only 3 elds: password, last login, and
is active.

Choose this option if:

ä You’re unhappy with the elds that the User model provides by default, such as first name
and last name.

ä You prefer to subclass from an extremely bare-bones clean slate but want to take advantage of
the AbstractBaseUser sane default approach to storing passwords.

..

WARNING: Third-Party Packages Should Not Be Defining the
User Model

.

Unless the express purpose of the third-party package is to provide a new Usermodel, third-
party packages should never use option #3 to add elds to the User model.

Let’s try it out with a custom User model for the Two Scoops project. Here are our requirements:

ä We need an email address.
ä We need to handle permissions per the traditional django.contrib.auth.models use of

PermissionsMixin; providing standard behavior for the Django admin.
ä We don’t need the rst or last name of a user.
ä We need to know their favorite ice cream topping.

Looking over the Django 1.5 documentation on customizing the User model, we notice there is a full
example (http://2scoops.co/1.5-customizing-user). It doesn’t do exactly what we want,
but we can modify it. Speci cally:

ä We’ll need to add PermissionsMixin to our custom User model.

159

http://2scoops.co/1.5-customizing-user

Chapter 16: Dealing With the User Model

ä We’ll need to implement a favorite toppings eld.
ä We’ll need to ensure that the admin.py fully supports our custom User model. Unlike the

example in the documentation, we do want to track groups and permissions.

Let’s do it! We’ll call our new User model, TwoScoopsUser.

Before we start writing our new TwoScoopsUser model, we need to write a custom TwoScoop-
sUserManager. is is generally required for custom Usermodels as the auth system expects certain
methods on the default manager, but the manager for the default user class expects elds we are not
providing.

..

E .

profiles/models.py
from django.db import models

from django.contrib.auth.models import (
BaseUserManager, AbstractBaseUser, PermissionsMixin

)

class TwoScoopsUserManager(BaseUserManager):
def create_user(self, email, favorite_topping,

password=None):
"""
Creates and saves a User with the given email,
favorite topping, and password.
"""
if not email:

msg = "Users must have an email address"
raise ValueError(msg)

if not favorite_topping:
msg = "Users must have a favorite topping"
raise ValueError(msg)

user = self.model(
email=TwoScoopsUserManager.normalize_email(email),
favorite_topping=favorite_topping,

160

16.2: Custom User Fields for Projects Starting at Django 1.5

..

)

user.set_password(password)
user.save(using=self._db)
return user

def create_superuser(self,
email,
favorite_topping,
password):

"""
Creates and saves a superuser with the given email,
favorite topping and password.
"""
user = self.create_user(email,

password=password,
favorite_topping=favorite_topping

)
user.is_admin = True
user.is_staff = True
user.is_superuser = True
user.save(using=self._db)
return user

With our TwoScoopsUserManager complete, we can write the TwoScoopsUser class.

..

E .

profiles/models.py (after the TwoScoopsUserManager)
class TwoScoopsUser(AbstractBaseUser, PermissionsMixin):

""" Inherits from both the AbstractBaseUser and
PermissionMixin.

"""
email = models.EmailField(

verbose_name="email address",
max_length=255,
unique=True,

161

Chapter 16: Dealing With the User Model

..

db_index=True,
)
favorite_topping = models.CharField(max_length=255)

USERNAME_FIELD = "email"
REQUIRED_FIELDS = ["favorite_topping",]

is_active = models.BooleanField(default=True)
is_admin = models.BooleanField(default=False)
is_staff = models.BooleanField(default=False)

objects = TwoScoopsUserManager()

def get_full_name(self):
The user is identified by their email and
favorite topping
return "%s prefers %s" % (self.email,

self.favorite_topping)

def get_short_name(self):
The user is identified by their email address
return self.email

def __unicode__(self):
return self.email

Boom! ere’s no first name or last name, which is probably what you wanted if you’re choos-
ing this option. e permissions are in place and most importantly, users have a favorite ice cream
topping!

Like the rst option, don’t forget to set this in your settings:

..

E .

settings/base.py
AUTH_USER_MODEL = "profiles.TwoScoopsUser"

162

16.2: Custom User Fields for Projects Starting at Django 1.5

Upon syncdb, this will create a new TwoScoopsUser table and various other references. We ask
that you try this on a new database rather than an existing one.

Once the table has been created, we can create a superuser locally via the shell:

python manage.py createsuperuser

With our new superuser account in hand, let’s create the pro les/admin.py so we can see the results.

Again, we follow the lead of the example in the Django documentation. We modify it to include the
permissions and favorite toppings elds. e results:

..

E .

profiles/admin.py
from django import forms
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.forms import ReadOnlyPasswordHashField

from .models import TwoScoopsUser

class TwoScoopsUserCreationForm(forms.ModelForm):
"""A form for creating new users. Includes all the

required fields, plus a repeated password.
"""
password1 = forms.CharField(label="Password",

widget=forms.PasswordInput)
password2 = forms.CharField(label="Password confirmation",

widget=forms.PasswordInput)

class Meta:
model = TwoScoopsUser
fields = ("email", "favorite_topping")

def clean_password2(self):
Check that the two password entries match
password1 = self.cleaned_data.get("password1")
password2 = self.cleaned_data.get("password2")
if password1 and password2 and password1 != password2:

163

Chapter 16: Dealing With the User Model

..

msg = "Passwords don't match"
raise forms.ValidationError(msg)

return password2

def save(self, commit=True):
Save the provided password in hashed format
user = super(TwoScoopsUserCreationForm,

self).save(commit=False)
user.set_password(self.cleaned_data["password1"])
if commit:

user.save()
return user

class TwoScoopsUserChangeForm(forms.ModelForm):
""" A form for updating users. Includes all the fields

on the user, but replaces the password field with
admin"s password hash display field.

"""
password = ReadOnlyPasswordHashField()

class Meta:
model = TwoScoopsUser

def clean_password(self):
Regardless of what the user provides, return the
initial value. This is done here, rather than on
the field, because the field does not have access
to the initial value
return self.initial["password"]

class TwoScoopsUserAdmin(UserAdmin):
Set the add/modify forms
add_form = TwoScoopsUserCreationForm
form = TwoScoopsUserChangeForm

The fields to be used in displaying the User model.
These override the definitions on the base UserAdmin

164

16.3: Summary

..

that reference specific fields on auth.User.
list_display = ("email", "is_staff", "favorite_topping")
list_filter = ("is_staff", "is_superuser",

"is_active", "groups")
search_fields = ("email", "favorite_topping")
ordering = ("email",)
filter_horizontal = ("groups", "user_permissions",)
fieldsets = (

(None, {"fields": ("email", "password")}),
("Personal info", {"fields":

("favorite_topping",)}),
("Permissions", {"fields": ("is_active",

"is_staff",
"is_superuser",
"groups",
"user_permissions")}),

("Important dates", {"fields": ("last_login",)}),
)
add_fieldsets = (

(None, {
"classes": ("wide",),
"fields": ("email", "favorite_topping",

"password1", "password2")}
),

)

Register the new TwoScoopsUserAdmin
admin.site.register(TwoScoopsUser, TwoScoopsUserAdmin)

Now if you go to your admin home and login, you’ll be able to create and modify the TwoScoopsUser
model records.

16.3 Summary

e new User model makes this an exciting time to be involved in Django. We are getting to par-
ticipate in a major infrastructure change with wide-ranging implications. We are the ones who get

165

Chapter 16: Dealing With the User Model

to pioneer the best practices.

In this chapter we covered the new method to nd the User model and de ne our own custom ones.
Depending on the needs of a project, they can either continue with the current way of doing things
or customize the actual user model.

e next chapter is a dive into the world of third-party packages.

166

17 | Django's Secret Sauce: Third-
Party Packages

e real power of Django is more than just the framework and documentation available at
http://djangoproject.com. It’s the vast, growing selection of third-party Django and Python
packages provided by the open source community. ere are many, many third-party packages avail-
able for your Django projects which can do an incredible amount of work for you. ese packages
have been written by people from all walks of life, and they power much of the world today.

Much of professional Django and Python development is about the incorporation of third-party
packages into Django projects. If you try to write every single tool that you need from scratch, you’ll
have a hard time getting things done.

is is especially true for us in the consulting world, where client projects consist of many of the
same or similar building blocks.

17.1 Examples of Third-Party Packages

Appendix A: Packages Mentioned In is Book covers all of the packages mentioned throughout Two
Scoops of Django. is list is a great starting point if you’re looking for highly-useful packages to
consider adding to your projects.

Note that not all of those packages are Django-speci c, which means that you can use some of them
in other Python projects. (Generally, Django-speci c packages generally have names pre xed with
“django-”, but there are many exceptions.)

167

http://djangoproject.com

Chapter 17: Django’s Secret Sauce: ird-Party Packages

17.2 Know About the Python Package Index

e PythonPackage Index (PyPI), located at http://pypi.python.org/pypi, is a repository of
software for the Python programming language. As of the start of 2013, it lists over 27,000 packages,
including Django itself.

For the vast majority of Python community, no open-source project release is considered official until
it occurs on the Python Package Index.

e Python Package Index is much more than just a directory. ink of it as the world’s largest center
for Python package information and les. Whenever you use pip to install a particular release of
Django, pip downloads the les from the Python Package Index. Most Python and Django packages
are downloadable from the Python Package Index in addition to pip.

17.3 Know About DjangoPackages.com

Django Packages (http://djangopackages.com) is a directory of reusable apps, sites, tools and
more for your Django projects. Unlike PyPI, it doesn’t store the packages themselves, instead provid-
ing a mix of hard metrics gathered from the Python Package Index, GitHub, Bitbucket, Read e-
Docs, and “soft” data entered by a user.

Django Packages is best known as a comparison site for evaluating package features. On Django
Packages, packages are organized into handy grids so they can be compared against each other.

Django Packages also happens to have been created by the authors of this book, with contributions
from numerous folks in the Python community. We continue to maintain and improve it as a helpful
resource for Django users.

17.4 Know Your Resources

Django developers unaware of the critical resources of Django Packages and the Python Package
Index are denying themselves one of the most important advantages of using Django and Python. If
you are not aware of these tools, it’s well worth the time you spend educating yourself.

As a Django (and Python) developer, make it your mission to use third-party libraries instead of
reinventing the wheel whenever possible. e best libraries have been written, documented, and

168

http://pypi.python.org/pypi
http://djangopackages.com

17.5: Tools for Installing and Managing Packages

tested by amazingly competent developers working around the world. Standing on the shoulders of
these giants is the difference between amazing success and tragic downfall.

As you use various packages, study and learn from their code. You’ll learn patterns and tricks that
will make you a better developer.

17.5 Tools for Installing and Managing Packages

To take full advantage of all the packages available for your projects, having virtualenv and pip
installed isn’t something you can skip over. It’s mandatory.

Refer to chapter 2, e Optimal Django Environment Setup, for more details.

17.6 Package Requirements

As we mentioned earlier in chapter 5, Settings and Requirements Files, we manage our Django/Python
dependencies with requirements les. ese les go into the requirements/ directory that exists in
the root of our projects.

.....

TIP: Researching Third-Party Packages To Use

.

If you want to learn more about the dependencies we list in this and other chapters, please
refer to Appendix A: Packages Mentioned In is Book.

17.7 Wiring Up Django Packages: The Basics

When you nd a third-party package that you want to use, follow these steps:

17.7.1 Step 1: Read the Documentation for the Package

Are you sure you want to use it? Make sure you know what you’re getting into before you install any
package.

169

Chapter 17: Django’s Secret Sauce: ird-Party Packages

17.7.2 Step 2: Add Package and Version Number to Your Require-
ments

If you recall from chapter 5 Settings and Requirements Files, a requirements/base.txt le looks some-
thing like this (but probably longer):

..

E .

Django==1.5.1
coverage==3.6
django-discover-runner==0.2.2
django-extensions==0.9
django-floppyforms==1.0

Note that each package is pinned to a speci c version number. Always pin your package dependencies
to version numbers.

What happens if you don’t pin your dependencies? You are almost guaranteed to run into problems at
some point when you try to reinstall or change your Django project. When new versions of packages
are released, you can’t expect them to be backwards-compatible.

Our sad example: Once we followed a software-as-a-service platform’s instructions for using their
library. As they didn’t have their own Python client, but an early adopter had a working implemen-
tation on GitHub, those instructions told us to put the following into our requirements/base.txt:

..
B E .

-e git+https://github.com/erly-adptr/py-junk.git#egg=py-jnk

Our mistake. We should have known better and pinned it to a particular git revision number.

Not the early adopter’s fault at all, but they pushed up a broken commit to their repo. Once we had
to x a problem on a site very quickly, so we wrote a bug x and tested it locally in development. It
passed the tests. en we deployed it to production in a process that grabs all dependency changes;
of course the broken commit was interpreted as a valid change. Which meant, while xing one bug,
we crashed the site.

Not a fun day.

170

17.8: Troubleshooting ird-Party Packages

e purpose of using pinned releases is to add a little formality and process to our published work.
Especially in Python, GitHub and other repos are a place for developers to publish their work-in-
progress, not the nal, stable work upon which our production-quality projects depend.

17.7.3 Step 3: Install the Requirements Into Your Virtualenv

Assuming you are already in a working virtualenv and are at the <repo root> of your project, you
pip install the appropriate requirements le for your setup, e.g. requirements/dev.txt.

If this is the rst time you’ve done this for a particular virtualenv, it’s going to take a while for it to
grab all the dependencies and install them.

17.7.4 Step 4: Follow the Package's Installation Instructions Ex-
actly

Resist the temptation to skip steps unless you’re very familiar with the package. Since Django package
developers love to get people to use their efforts, most of the time the installation instructions they’ve
authored make it easy to get things running.

17.8 Troubleshooting Third-Party Packages

Sometimes you run into problems setting up a package. What should you do?

First, make a serious effort to determine and solve the problem yourself. Pore over the documentation
and make sure you didn’t miss a step. Search online to see if others have run into the same issue. Be
willing to roll up your sleeves and look at the package source code, as you may have found a bug.

If it appears to be a bug, see if someone has already reported it in the package repository’s issue
tracker. Sometimes you’ll nd workarounds and xes there. If it’s a bug that no one has reported, go
ahead and le it.

If you still get stuck, try asking for help in all the usual places: StackOver ow, IRC #django, the
project’s IRC channel if it has its own one, and your local Python user group. Be as descriptive and
provide as much context as possible about your issue.

171

Chapter 17: Django’s Secret Sauce: ird-Party Packages

17.9 Releasing Your Own Django Packages

Whenever you write a particularly useful Django app, consider packaging it up for reuse in other
projects.

e best way to get started is to follow Django’s Advanced Tutorial: How to Write Reusable Apps for
the basics: https://docs.djangoproject.com/en/1.5/intro/reusable-apps/

In addition to what is described in that tutorial, we recommend that you also:

ä Create a public repo containing the code. Most Django packages are hosted on GitHub these
days, so it’s easiest to attract contributors there, but various alternatives exist (Sourceforge,
Bitbucket, Launchpad, Gitorious, Assembla, etc.).

ä Release the package on the Python Package Index (http://pypi.python.org). Follow the sub-
mission instructions: http://2scoops.co/submit-to-pypi

ä Add the package to Django Packages: http://djangopackages.com.
ä Use Read the Docs (http://rtfd.org) to host your Sphinx documentation.

.....

TIP: Where Should I Create A Public Repo?

.

ere are websites that offer free source code hosting and version control for open-source
projects. As mentioned in chapter 2, e Optimal Django Environment Setup, GitHub or
Bitbucket are two popular options.

When choosing a hosted version control service, keep in mind that pip only supports Git,
Mercurial, Bazaar, and Subversion.

17.10 What Makes a Good Django Package?

Here’s a checklist for you to use when releasing a new open-source Django package. Much of this
applies to Python packages that are not Django-speci c. is checklist is also helpful for when you’re
evaluating a Django package to use in any of your projects.

is section is adapted from our DjangoCon 2011 talk, “Django Package underdome: Is Your Package
Worthy?”: http://2scoops.co/django-thunderdome-slides

172

https://docs.djangoproject.com/en/1.5/intro/reusable-apps/
http://2scoops.co/submit-to-pypi
http://djangopackages.com
http://rtfd.org
http://2scoops.co/django-thunderdome-slides

17.10: What Makes a Good Django Package?

17.10.1 Purpose

Your package should do something useful and do it well. e name should be descriptive. e pack-
age’s repo root folder should be pre xed with ‘django-’ to help make it easier to nd.

If part of the package’s purpose can be accomplished with a related Python package, then create a
separate Python package and use it as a dependency.

17.10.2 Scope

Your package’s scope should be tightly focused on one small task. is means that your application
logic will be tighter, and users will have an easier time patching or replacing the package.

17.10.3 Documentation

A package without documentation is a pre-alpha package. Docstrings don’t suffice as documentation.

As described in chapter 19, Documentation: Be Obsessed, your docs should be written in ReStruc-
turedText. A nicely-formatted version of your docs should be generated with Sphinx and hosted
publicly. We encourage you to use https://readthedocs.org/ with webhooks so that your for-
matted documentation automatically updates whenever you make a change.

If your package has dependencies, they should be documented. Your package’s installation instruc-
tions should also be documented. e installation steps should be bulletproof.

17.10.4 Tests

Your package should have tests. Tests improve reliability, make it easier to advance Python/Django
versions, and make it easier for others to contribute effectively. Write up instructions on how to run
your package’s test suite. If you or any contributor can run your tests easily before submitting a pull
request, then you’re more likely to get better quality contributions.

173

https://readthedocs.org/

Chapter 17: Django’s Secret Sauce: ird-Party Packages

17.10.5 Activity

Your package should receive regular updates from you or contributors if/when needed. When you
update the code in your repo, you should consider uploading a minor or major release to the Python
Package Index.

17.10.6 Community

Great open-source packages, including those for Django, often end up receiving contributions from
other developers in the open source community. All contributors should receive attribution in a
CONTRIBUTORS.rst or AUTHORS.rst le.

Be an active community leader if you have contributors or forks of your package. If your package is
forked by other developers, pay attention to their work. Consider if there are ways that parts or all
of their work can be merged into your fork. If the package’s functionality diverges a lot from your
package’s purpose, be humble and consider asking the other developer to give their fork a new name.

17.10.7 Modularity

Your package should be as easily pluggable into any Django project that doesn’t replace core compo-
nents (templates, ORM, etc) with alternatives. Installation should be minimally invasive. Be careful
not to confuse modularity with over-engineering, though.

17.10.8 Availability on PyPI

All major and minor releases of your package should be available for download from the Python
Package Index. Developers who wish to use your package should not have to go to your repo to get
a working version of it. Use proper version numbers per the next section.

174

17.10: What Makes a Good Django Package?

17.10.9 Proper Version Numbers

Like Django and Python, we prefer to adhere to the strict version of PEP 386 naming schema. In
fact we follow the ‘A.B.C’ pattern. Let’s go through each element:

‘A’ represents the major version number. Increments should only happen with large changes that
break backwards compatability from the previous major version. It’s not uncommon to see
large API changes between versions.

‘B’ is the minor version number. Increments include less breaking changes, or deprecation notices
about forthcoming changes.

‘C’ represents bug x releases, and purists call this the ‘micro’ release. It’s not uncommon for devel-
opers to wait until a project has its rst release at this level before trying the latest major or
minor release of an existing project.

For alpha, beta, or release-candidates for a project, the convention is to place this information as a
suffix to the upcoming version number. So you might have:

ä Django 1.5
ä django-crispy-forms 1.1b1

..

WARNING: Don't Upload Unfinished Code To PyPI

.

PyPI is meant to be the place where dependable, stable packages can be harnessed to build
Python projects. PyPI is not the place for Alpha, Beta, or Release Candidate code, especially as
pip and other tools will fetch the latest release by default.

Be nice to other developers and follow the convention of only placing proper releases
on PyPI.

Additional Reading:

ä http://www.python.org/dev/peps/pep-0386

17.10.10 License

Your package needs a license. Preferably, it should be licensed under the BSD or MIT licenses, which
are generally accepted for being permissive enough for most commercial or noncommercial uses.

175

http://www.python.org/dev/peps/pep-0386

Chapter 17: Django’s Secret Sauce: ird-Party Packages

Create a LICENSE.rst le in your repo root, mention the license name at the top, and
paste in the appropriate text from the appoved list at the Open Source Initiative (OSI)
http://opensource.org/licenses/category for the license that you choose.

.....

TIP: Licenses Protect You and the World

.

In this era of casual litigation and patent trolls adding a software license isn’t just a matter of
protecting your ownership of the code. It’s much, much more. If you don’t license your code,
or use an unapproved license not vetted by real lawyers, you run the risk of your work being
used as a weapon by a patent troll, or in the case of nancial or medical disaster, you could
be held liable.
OSI-approved licenses all include a couple critical statements on copyright, redistribution,
disclaimer of warranty, and limitation of liability.

17.10.11 Clarity of Code

e code in your Django package should be as clear and simple as possible, of course. Don’t use weird,
unusual Python/Django hacks without explaining what you are doing.

17.11 Summary

Django’s real power is in the vast selection of third-party packages available to you for use in your
Django projects.

Make sure that you have pip and virtualenv installed and know how to use them, since they’re your
best tools for installing packages on your system in a manageable way.

Get to know the packages that exist. e Python Package Index and Django Packages are a great
starting point for nding information about packages.

Package maturity, documentation, tests, and code quality are good starting criteria when evaluating
a Django package.

Finally, we’ve provided our base requirements le to give you ideas about the packages that we use.

176

http://opensource.org/licenses/category

17.11: Summary

Installation of stable packages is the foundation of Django projects big and small. Being able to
use packages means sticking to speci c releases, not just the trunk or master of a project. Barring a
speci c release, you can rely on a particular commit. Fixing problems that a package has with your
project takes diligence and time, but remember to ask for help if you get stuck.

177

Chapter 17: Django’s Secret Sauce: ird-Party Packages

178

18 | Testing Stinks and Is a Waste of
Money!

ere, got you to this chapter.

Now you have to read it.

We’ll try and make this chapter interesting.

18.1 Testing Saves Money, Jobs, and Lives

Daniel ’s Story: Ever hear the term “smoke test”?

Gretchen Davidian, a Management and Program Analyst at NASA, told me that when she was still
an engineer, her job as a tester was to put equipment intended to get into space through such rigorous
conditions that they would begin emitting smoke and eventually catch on re.

at sounds exciting! Employment, money, and lives were on the line, and knowing Gretchen’s at-
tention to detail, I’m sure she set a lot of hardware on re.

Keep in mind that for a lot of us developers the same risks are on the line as NASA. I recall in
2004 while working for a private company how a single miles-vs-kilometers mistake cost a company
hundreds of thousands of dollars in a matter of hours. Quality Assurance (QA) staff lost their jobs,
which meant money and health bene ts. In other words, employment, money, and possibly lives can
be lost without adequate tests. While the QA staff were very dedicated, everything was done via
manually clicking through projects, and human error simply crept into the testing process.

179

Chapter 18: Testing Stinks and Is a Waste of Money!

Today, as Django moves into a wider and wider set of applications, the need for automated testing is
just as important as it was for Gretchen at NASA and for the poor QA staff in 2004. Here are some
cases where Django is used today that have similar quality requirements:

ä Your application handles medical information.
ä Your application provides life-critical resources to people in need.
ä Your application works with other people’s money now or will at some point in the future.

.....

PACKAGE TIP: Useful Libraries For Testing Django Projects

.

We like to use coverage.py and django-discover-runner.

What these tools do is provide a clear insight into what parts of your code base are covered
by tests. You also get a handy percentage of how much of your code is covered by tests. Even
100% test coverage doesn’t guarantee a bug-free application, but it helps.

We want to thank Ned Batchelder for his incredible work in maintaining coverage.py. It’s a
superb project and useful for any Python related project.

18.2 How to Structure Tests

Let’s say we’ve just created a new Django app. e rst thing we do is delete the default but useless
tests.py module that django-admin.py startapp creates.

In its place, we create a tests directory and place an init .py le in it so it becomes a valid Python
module. en, inside the new tests module, because most apps need them, we create test forms.py,
test models.py, test views.py modules. Tests that apply to forms go into test forms.py, model tests go
into test models.py, and so on.

Here’s what it looks like:

..

E .

popsicles/
tests/

__init__.py
test_forms.py

180

18.3: How to Write Unit Tests

..
test_models.py
test_views.py

Also, if we have other les besides forms.py, models.py and views.py that need testing, we create
corresponding test les and drop them into the tests/ directory too.

.....

TIP: Prefix Test Modules With test

.

It’s critically important that we always pre x test modules with test , otherwise we can’t con-
gure django-discover-runner to discover just our test les.

When you don’t pre x your test modules this way, django-discover-runner will attempt to
evaluate all modules, including your settings les!

18.3 How to Write Unit Tests

It’s not uncommon for developers to feel at the top of their game at the moment they are writing
code. When they revisit that same code in months, weeks, days, or even hours and it’s not uncommon
for developers to feel as if that same code is of poor quality.

e same applies to writing unit tests.

Over the years, we’ve evolved a number of practices we like to follow when writing tests, including
unit tests. Our goal is always to write the most meaningful tests in the shortest amount of time.
Hence the following:

18.3.1 Each Test Method Tests One Thing

A test method must be extremely narrow in what it tests. A single test should never assert the behavior
of multiple views, models, forms, or even multiple methods within a class. Instead, a single test should
assert the behavior of a single view, model, form, method or function.

181

Chapter 18: Testing Stinks and Is a Waste of Money!

Of course, therein lies a conundrum. How does one run a test for a view, when views often require
the use of models, forms, methods, and functions?

e trick is to be absolutely minimalistic when constructing the environment for a particular test, as
shown in the example below:

..

E .

flavors/tests/test_api.py
import json

from django.core.urlresolvers import reverse
from django.test import TestCase

from flavors.models import Flavor

class FlavorAPITests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title="A Title", slug="a-slug")

def test_list(self):
url = reverse("flavor_object_api")
response = self.client.get(url)
self.assertEquals(response.status_code, 200)
data = json.loads(response.content)
self.assertEquals(len(data), 1)

In this test, taken from code testing the API we presented in section 11.2, ‘Implementing a Simple
JSON API’, chapter 11, Building REST APIs in Django, we use the setUp() method to create the
minimum possible number of records needed to run the test.

Here’s a much larger example, one based off of the REST API example that we provided in chap-
ter 11.

..

E .

flavors/tests/test_api.py
import json

182

18.3: How to Write Unit Tests

..

from django.core.urlresolvers import reverse
from django.test import TestCase
from django.utils.http import urlencode

from flavors.models import Flavor

class DjangoRestFrameworkTests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title="title1", slug="slug1")
Flavor.objects.get_or_create(title="title2", slug="slug2")

self.create_read_url = reverse("flavor_rest_api")
self.read_update_delete_url = \

reverse("flavor_rest_api", kwargs={"slug": "slug1"})

def test_list(self):
response = self.client.get(self.create_read_url)

Are both titles in the content?
self.assertContains(response, "title1")
self.assertContains(response, "title2")

def test_detail(self):
response = self.client.get(self.read_update_delete_url)
data = json.loads(response.content)
content = {"id": 1, "title": "title1", "slug": "slug1",

"scoops_remaining": 0}
self.assertEquals(data, content)

def test_create(self):
post = {"title": "title3", "slug": "slug3"}
response = self.client.post(self.create_read_url, post)
data = json.loads(response.content)
self.assertEquals(response.status_code, 201)
content = {"id": 3, "title": "title3", "slug": "slug3",

183

Chapter 18: Testing Stinks and Is a Waste of Money!

..

"scoops_remaining": 0}
self.assertEquals(data, content)
self.assertEquals(Flavor.objects.count(), 3)

def test_delete(self):
response = self.client.delete(self.read_update_delete_url)
self.assertEquals(response.status_code, 204)
self.assertEquals(Flavor.objects.count(), 1)

def test_update(self):
urlencode the PUT because self.client.put doesn't do it.
put = urlencode(

{"title": "Triple Peanut Butter Cup",
"slug": "triple-peanut-butter-cup"}

)
This only applies to Django 1.5+
Send as form data or Django"s client.put uses
"application/octet-stream".
response = self.client.put(self.read_update_delete_url, put,

content_type="application/x-www-form-urlencoded"
)
self.assertEquals(response.status_code, 200)
self.assertEquals(Flavor.objects.get(pk=1).title,

"Triple Peanut Butter Cup")

18.3.2 Don't Write Tests That Have to Be Tested

Tests should be written as simply as possible. If the code in a test or called to help run a test feels
complicated or abstracted, then you have a problem. In fact, we ourselves are guilty of writing over-
complicated utility test functions that required their own tests in the past. As you can imagine, this
made debugging the actual tests a nightmare.

Don’t Repeat Yourself Doesn’t Apply to Writing Tests

e setUp() method is really useful for generating reusable data across all test methods in a test

184

18.3: How to Write Unit Tests

class. However, sometimes we need similiar but different data between test methods, which is where
we often fall into the trap of writing fancy test utilities. Or worse, we decide that rather than write
20 similiar tests, we can write a single method that when passed certain aguments will handle all the
work for us.

Our favorite method of handling these actions is to just dig in and write the same or similar code
multiple times. In fact, we’ll quietly admit to copy/pasting code between tests to expedite our work.

18.3.3 Don't Rely on Fixtures

We’ve learned over time that using xtures is problematic. e problem is that xtures are hard to
maintain as a project’s data changes over time. Modifying JSON-formatted les to match your last
migration is hard, especially as it can be difficult to identify during the JSON load process where
your JSON le(s) is either broken or a subtly inaccurate representation of the database.

Rather than wrestle with xtures, we’ve found it’s easier to write code that relies on the ORM. Other
people like to use third-party packages.

.....

PACKAGE TIP: Tools to Generate Test Data

.

e following are popular tools for test data generation:
ä factory boy A package that generates model test data.
ä model mommy Another package that generates model test data.
ä mock Not explicitly for Django, this allows you to replace parts of your system with

mock objects. is project made its way into the standard library as of Python 3.3.

18.3.4 Things That Should Be Tested

Everything! Seriously, you should test whatever you can, including:

Views: viewing of data, changing of data, and custom class-based view methods.
Models: creating/updating/deleting of models, model methods, model manager methods.
Forms: form methods, clean() methods, and custom elds.

185

Chapter 18: Testing Stinks and Is a Waste of Money!

Validators: really dig in and write multiple test methods against each custom validator you write.
Pretend you are a malignant intruder attempting to damage the data in the site.

Signals: Since they act at a distance, signals can cause grief especially if you lack tests on them.
Filters: Since lters are essentially just functions accepting one or two arguments, writing tests for

them should be easy.
Template Tags: Since template tags can do anything and can even accept template context, writing

tests often becomes much more challenging. is means you really need to test them, since
otherwise you may run into edge cases.

Miscellany: Context processors, middleware, email, and anything else not covered in this list.

e only things that shouldn’t be tested are parts of your project that are already covered by tests in
core Django and third-party packages. For example, a model’s elds don’t have to be tested if you’re
using Django’s standard elds as-is. However, if you’re creating a new type of eld (e.g. by subclassing
FileField), then you should write detailed tests for anything that could go wrong with your new
eld type.

Figure 18.1: Test as much of your project as you can, as if it were free ice cream.

186

18.4: Continuous Integration

18.4 Continuous Integration

For medium and large projects, we recommend setting up a continuous integration (CI) server to
run the project’s test suite whenever code is committed and pushed to the project repo.

If setting up a continuous integration (CI) server is too much of a hassle, you can use a hosted
continuous integration service like Travis CI.

18.4.1 Resources for Continuous Integration

ä http://en.wikipedia.org/wiki/Continuous_Integration
ä http://jenkins-ci.org/
ä http://www.caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
ä http://bartek.im/showoff-jenkins/
ä http://ci.djangoproject.com/
ä http://docs.python-guide.org/en/latest/scenarios/ci.html

18.5 Who Cares? We Don't Have Time for Tests!

“Tests are the Programmer’s stone, transmuting fear into boredom.” –Kent Beck

Let’s say you are con dent of your coding skill and decide to skip testing to increase your speed of
development. Or maybe you feel lazy. It’s easy to argue that even with test generators and using tests
instead of the shell, they can increase the time to get stuff done.

Oh, really?

What about when it’s time to upgrade?

at’s when the small amount of work you did up front to add tests saves you a lot of work.

For example, in the summer of 2010, Django 1.2 was the standard when we started Django Packages
(http://www.djangopackages.com). Since then we’ve stayed current with new Django versions,
which has been really useful. Because of our pretty good test coverage, moving up a version of Django
(or the various dependencies) has been easy. Our path to upgrade:

187

http://en.wikipedia.org/wiki/Continuous_Integration
http://jenkins-ci.org/
http://www.caktusgroup.com/blog/2010/03/08/django-and-hudson-ci-day-1/
http://bartek.im/showoff-jenkins/
http://ci.djangoproject.com/
http://docs.python-guide.org/en/latest/scenarios/ci.html
http://www.djangopackages.com

Chapter 18: Testing Stinks and Is a Waste of Money!

ä Increase the version in a local instance of Django Packages.
ä Run the tests.
ä Fix any errors that are thrown by the tests.
ä Do some manual checking.

If Django Packages didn’t have tests, any time we upgraded anything we would have to click through
dozens and dozens of scenarios manually, which is error prone. Having tests means we can make
changes and dependency upgrades with the con dence that our users (i.e. the Django community)
won’t have to deal with a buggy experience.

is is the bene t of having tests.

18.6 The Game of Test Coverage

A great, fun game to play is trying get test coverage as high as possible. Every work day we increase
our test coverage is a victory, and every day the coverage goes down is a loss.

18.7 Setting Up the Test Coverage Game

Yes, we call test coverage a game. It’s a good tool for developers to push themselves. It’s also a nice
metric that both developers and their clients/employers/investors can use to help evaluate the status
of a project.

We advocate following these steps because most of the time we want to only test our own project’s
apps, not all Django and the myriad of third-party libraries that are the building blocks of our project.
Testing those ‘building blocks’ takes an enormous amount of time, which is a waste because most are
already tested or require additional setup of resources.

18.7.1 Step 1: Set Up a Test Runner

In our settings directory, we create a settings/test.py module and add the following:

188

18.7: Setting Up the Test Coverage Game

..

E .

""" Test settings and globals which
allow us to run our test suite
locally. """

from .base import *

########## TEST SETTINGS
TEST_RUNNER = "discover_runner.DiscoverRunner"
TEST_DISCOVER_TOP_LEVEL = PROJECT_ROOT
TEST_DISCOVER_ROOT = PROJECT_ROOT
TEST_DISCOVER_PATTERN = "test_*"

########## IN-MEMORY TEST DATABASE
DATABASES = {

"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
"USER": "",
"PASSWORD": "",
"HOST": "",
"PORT": "",

},
}

.....

TIP: It's Okay to Use SQLite3 to Speed Up Tests

.

For tests we like to use an in-memory instance of SQLite3 to expedite the running of tests.
We can have Django use PostgreSQL or MySQL (or other databases) but after years of
writing tests for Django we’ve yet to catch problems caused by SQLite3’s loose eld typing.

18.7.2 Step 2: Run Tests and Generate Coverage Report

Let’s try it out! In the command-line, at the <project root>, type:

189

Chapter 18: Testing Stinks and Is a Waste of Money!

..
E .

$ coverage run manage.py test --settings=twoscoops.settings.test

If we have nothing except for the default tests for two apps, we should get a response that looks like:

..

E .

Creating test database for alias "default"...
..

Ran 2 tests in 0.008s

OK

Destroying test database for alias "default"...

is doesn’t look like much, but what it means is that we’ve constrained our application to only run
the tests that you want. Now it’s time to go and look at and analyze our embarrassingly low test
coverage numbers.

18.7.3 Step 3: Generate the report!

coverage.py provides a very useful method for generating HTML reports that don’t just provide
percentage numbers of what’s been covered by tests, it also shows us the places where code is not
tested. In the command-line, at the <project root>:

..
E .

coverage html --include="$SITE_URL*" --omit="admin.py"

Ahem...don’t forget to change <project-root> to match your development machine’s structure and
don’t forget the trailing asterisk (the ‘*’ character)! For example, depending on where one does things,
the <path-to-project-root> could be:

ä /Users/audreyr/code/twoscoops/twoscoops/

190

18.8: Playing the Game of Test Coverage

ä /Users/pydanny/projects/twoscoops/twoscoops/
ä c:\ twoscoops

After this runs, in the <project root> directory you’ll see a new directory called htmlcov/ . In the
htmlcov/ directory, open the index.html le using any browser.

What is seen in the browser is the test results for your test run. Unless you already wrote some tests,
the total on the front page will be in the single digits, if not at 0%. Click into the various modules
listed and you should see lots of code that’s red-colored. Red is bad.

Let’s go ahead and admit that our project has a low coverage total. If your project has a low coverage
total, you need to admit it as well. It’s okay just so long as we also resolve to improve the coverage
total.

In fact, there is nothing wrong in saying publicly that you are working to improve a project’s test
coverage. en, other developers (including ourselves) will cheer you on!

18.8 Playing the Game of Test Coverage

e game has a single rule:

Mandate that no commit can lower test coverage.

So if we go to add a feature and coverage is 65% when we start, we can’t merge our thing in until
coverage is at least 65% again. At the end of each day, if your test coverage goes up by any amount,
you are winning.

Keep in mind that the gradual increase of test coverage can be a very good thing over huge jumps.
Gradual increases can mean that we developers aren’t putting in bogus tests to bump up coverage
numbers; instead, we are improving the quality of the project.

18.9 Summary

All of this might seem silly, but testing can be very serious business. In a lot of developer groups
this subject, while gami ed, is taken very seriously. Lack of stability in a project can mean the loss of
clients, contracts, and even employment.

In the next chapter we cover a common obsession of Python developers: documentation.

191

Chapter 18: Testing Stinks and Is a Waste of Money!

192

19 | Documentation: Be Obsessed

Given a choice between ice cream and writing great documentation, most Python developers would
probably choose to write the documentation. at being said, writing documentation while eating
ice cream is even better.

When you have great documentation tools like reStructuredText and Sphinx, you actually can’t help
it but want to add docs to your projects.

.....

PACKAGE TIP: Install Sphinx Systemwide

.

We’ve found that simply installing Sphinx fetches for us all the pieces you need to document
our Django (or Python) project. We recommend pip installing Sphinx systemwide, as you’ll
want to have it handy for every Django project.

19.1 Use reStructuredText for Python Docs

You’ll want to learn and follow the standard Python best practices for documentation. ese days, re-
StructuredText (RST) is the most common markup language used for documenting Python projects.

What follows are links to the formal reStructuredText speci cation and a couple sample projects
which bene t from using it:

ä http://2scoops.co/restructured-text-specification
ä https://docs.djangoproject.com/en/1.5/
ä http://docs.python.org

193

http://2scoops.co/restructured-text-specification
https://docs.djangoproject.com/en/1.5/
http://docs.python.org

Chapter 19: Documentation: Be Obsessed

While it’s possible to study the formal documentation for reStructuredText and learn at least the
basics, here is a quick primer of some very useful commands you should learn.

..

E .

Section Header
==============

emphasis (bold/strong)

italics

Simple link: http://django.2scoops.org
Fancier Link: `Two Scoops of Django`_

.. _`Two Scoops of Django`: https://django.2scoops.org

Subsection Header

#) An enumerated list item

#) Second item

* First bullet

* Second bullet

* Indented Bullet

* Note carriage return and indents

Literal code block::

def like():
print("I like Ice Cream")

for i in range(10):
like()

194

19.1: Use reStructuredText for Python Docs

..

Python colored code block (requires pygments):

code-block:: python

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

code-block:: javascript

console.log("Don't use alert()");

19.1.1 Use Sphinx to Generate Documentation From reStruc-
turedText

Sphinx is a tool for generating nice-looking docs from your .rst les. Output formats include HTML,
LaTeX, manual pages, and plain text.

Follow the instructions to generate Sphinx docs: http://sphinx-doc.org/.

.....

TIP: Build Your Sphinx Documentation At Least Weekly

.

You never know when bad cross-references or invalid formatting can break the Sphinx build.
Rather than discover that the documentation is unbuildable at an awkward moment, just
make a habit of creating it on a regular basis.

195

http://sphinx-doc.org/

Chapter 19: Documentation: Be Obsessed

19.2 What Docs Should Django Projects Contain?

Developer-facing documentation refers to notes and guides that developers need in order to set up
and maintain a project. is includes notes on installation, deployment, architecture, how to run tests
or submit pull requests, and more. We’ve found that it really helps to place this documentation in all
our projects, private or public. Here we provide a table that describes what we consider the absolute
minimum documentation:

Filename or Directory Reason Notes
README.rst Every Python project you begin should

have a README.rst file in the repository
root.

Provide at least a short
paragraph describing what the
project does. Also, link to the
installation instructions in the
docs/ directory.

docs/ Your project documentation should go
in one, consistent location. This is the
Python community standard.

A simple directory

docs/deployment.rst This file lets you take a day off. A point-by-point set of
instructions on how to
install/update the project into
production, even if it's done via
something powered by Ruby,
Chef, Fabric, or a Makefile.

docs/installation.rst This is really nice for new people
coming into a project or when you get a
new laptop and need to set up the
project.

A point-by-point set of
instructions on how to onboard
yourself or another developer
with the software setup for a
project.

docs/architecture.rst A guide for understanding what things
evolved from as a project ages and
grows in scope.

This is how you imagine a project
to be in simple text and it can be
as long or short as you want.
Good for keeping focused at the
beginning of an effort.

Table 19.1: Documentation Django Projects Should Contain

196

19.3: Wikis and Other Documentation Methods

Figure 19.1: Even ice cream could bene t from documentation.

19.3 Wikis and Other Documentation Methods

For whatever reason, if you can’t place developer-facing documentation in the project itself, you
should have other options. While wikis, online document stores, and word processing documents
don’t have the feature of being placed in version control, they are better than no documentation.

Please consider creating documents within these other methods with the same names as the ones we
suggested in the table on the previous page.

19.4 Summary

In this chapter we went over the following:

ä e use of reStructuredText to write documentation in plaintext format.
ä e use Sphinx to render your documentation in HTML and ePub formats. If you know how

to install LaTeX you can even render it as PDF. For reference, installing LaTeX is easy to do
on Linux and Windows and a bit harder on Mac OS X.

197

Chapter 19: Documentation: Be Obsessed

ä Advice on the documentation requirements for any Django project.

Next, we’ll take a look at common bottlenecks in Django projects and ways to deal with them.

198

20 | Finding and Reducing Bottle-
necks

is chapter covers a few basic strategies for identifying bottlenecks and speeding up your Django
projects.

20.1 Should You Even Care?

Remember, premature optimization is bad. If your site is small- or medium-sized and the pages are
loading ne, then it’s okay to skip this chapter.

On the other hand, if your site’s user base is growing steadily or you’re about to land a strategic
partnership with a popular brand, then read on.

20.2 Speed Up Query-Heavy Pages

is section describes how to reduce bottlenecks caused by having too many queries, as well as those
caused by queries that aren’t as snappy as they could be.

We also urge you to read up on database access optimization in the official Django docs:
http://2scoops.co/1.5-db-optimization

20.2.1 Find Excessive Queries With Django Debug Toolbar

You can use django-debug-toolbar to help you determine where most of your queries are coming
from. You’ll nd bottlenecks such as:

199

http://2scoops.co/1.5-db-optimization

Chapter 20: Finding and Reducing Bottlenecks

ä Duplicate queries in a page.
ä ORM calls that resolve to many more queries than you expected.
ä Slow queries.

You probably have a rough idea of some of the URLs to start with. For example, which pages don’t
feel snappy when they load?

Install django-debug-toolbar locally if you don’t have it yet. Con gure it to include the SQLDebug-
Panel. en run your project locally, open it in a web browser, and expand the debug toolbar. It’ll
show you how many queries the current page contains.

.....

PACKAGE TIP: Packages For Profiling and Performance Analy-
sis

.

django-debug-toolbar is a critical development tool and an invaluable aid in page-by-page
analysis. We also recommend adding django-cache-panel to your project, but only con g-
ured to run when settings/dev.py module is called. is will increase visibility into what your
cache is doing.

django-extensions comes with a tool called RunPro leServer that starts Django’s runserver
command with hotshot/pro ling tools enabled.

newrelic is a third-party library provided by http://newrelic.com. ey provide a free
service that really helps in performance analysis of staging or production sites. Newrelic’s
for-pay service is amazing, and often worth the investment.

20.2.2 Reduce the Number of Queries

Once you know which pages contain an undesirable number of queries, gure out ways to reduce
that number. Some of the things you can attempt:

ä Try using select related() in your ORM calls to combine queries. It follows ForeignKey
relations and combines more data into a larger query. If using CBVs, django-braces makes this
doing this trivial with the SelectRelatedMixin. But beware of queries that get too large!

200

http://newrelic.com

20.2: Speed Up Query-Heavy Pages

ä If the same query is being generated more than once per template, move the query into the
Python view, add it to the context as a variable, and point the template ORM calls at this new
context variable.

ä Implement caching using a key/value store such as Memcached. en write tests to assert the
number of queries run in a view. See http://2scoops.co/1.5-test-num-queries for
instructions.

20.2.3 Speed Up Common Queries

e length of time it takes for individual queries can also be a bottleneck. Here are some tips, but
consider them just starting points:

ä Make sure your indexes are helping speed up your most common slow queries. Look at the raw
SQL generated by those queries, and index on the elds that you lter/sort on most frequently.
Look at the generated WHERE and ORDER BY clauses.

ä Understand what your indexes are actually doing in production. Development machines will
never perfectly replicate what happens in production, so learn how to analyze and understand
what’s really happening with your database.

ä Look at the query plans generated by common queries.
ä Turn on your database’s slow query logging feature and see if any slow queries occur frequently.
ä Use django-debug-toolbar in development to identify potentially-slow queries defensively, be-

fore they hit production.

Once you have good indexes, and once you’ve done enough analysis to know which queries to rewrite,
here are some starting tips on how to go about rewriting them:

..
1 Rewrite your logic to return smaller result sets when possible.
..
2 Re-model your data in a way that allows indexes to work more effectively.
..
3 Drop down to raw SQL in places where it would be more efficient than the generated query.

201

http://2scoops.co/1.5-test-num-queries

Chapter 20: Finding and Reducing Bottlenecks

.....

TIP: Use EXPLAIN ANALYZE / EXPLAIN

.

If you’re using PostgreSQL, you can use EXPLAIN ANALYZE to get an extremely detailed
query plan and analysis of any raw SQL query. For more information, see:

ä http://www.revsys.com/writings/postgresql-performance.html
ä http://2scoops.co/craig-postgresql-perf2

e MySQL equivalent is the EXPLAIN command, which isn’t as detailed but is still helpful.
For more information, see:

ä http://dev.mysql.com/doc/refman/5.6/en/explain.html

20.3 Get the Most Out of Your Database

You can go a bit deeper beyond optimizing database access. Optimize the database itself ! Much of
this is database-speci c and already covered in other books, so we won’t go into too much detail here.

20.3.1 Know What Doesn't Belong in the Database

Frank Wiles of Revsys taught us that there are two things that should never go into any large site’s
relational database:

Logs. Don’t add logs to the database. Logs may seem OK on the surface, especially in development.
Yet adding this many writes to a production database will slow their performance. When the ability to
easily perform complex queries against your logs is necessary, we recommend third-party services such
as splunk.com or loggly.com or even use of document based NoSQL databases including MongoDB
or CouchDB.

Ephemeral data. Don’t store ephemeral data in the database. What this means is data that re-
quires constant rewrites is not ideal for use in relational databases. is includes examples such as
django.contrib.sessions, django.contrib.messages, and metrics. Instead, move this data to things like
Memcached, Redis, Riak, and other non-relational stores.

202

http://www.revsys.com/writings/postgresql-performance.html
http://2scoops.co/craig-postgresql-perf2
http://dev.mysql.com/doc/refman/5.6/en/explain.html

20.4: Cache Queries With Memcached or Redis

.....

TIP: Frank Wiles on Binary Data in Databases

.

Actually, Frank says that there three things to never store in a database, the
third item being binary data. Storage of binary data in databases is addressed by
django.db.models.FileField, which does the work of storing les on le servers like
AWS CloudFront or S3 for you.

20.3.2 Getting the Most Out of PostgreSQL

If using PostgreSQL, be certain that it is set up correctly in production. As this is outside the scope
of the book, we recommend the following articles:

ä http://wiki.postgresql.org/wiki/Detailed_installation_guides
ä http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
ä http://www.revsys.com/writings/postgresql-performance.html
ä http://2scoops.co/craig-postgresql-perf
ä http://2scoops.co/craig-postgresql-perf2

For further information, you may want to read the book “PostgreSQL 9.0 High Performance”:
http://2scoops.co/high-perf-postgresql

20.3.3 Getting the Most Out of MySQL

It’s easy to get MySQL running, but optimizing production installations requires experience and
understanding. As this is outside the scope of this book, we recommend the following books by
MySQL experts to help you:

ä “High Performance MySQL” http://2scoops.co/high-perf-mysql

20.4 Cache Queries With Memcached or Redis

You can get a lot of mileage out of simply setting up Django’s built-in caching system with Mem-
cached or Redis. You will have to install one of these tools, install a package that provides Python
bindings for them, and con gure your project.

203

http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.revsys.com/writings/postgresql-performance.html
http://2scoops.co/craig-postgresql-perf
http://2scoops.co/craig-postgresql-perf2
http://2scoops.co/high-perf-postgresql
http://2scoops.co/high-perf-mysql

Chapter 20: Finding and Reducing Bottlenecks

You can easily set up the per-site cache, or you can cache the output of individual views or template
fragments. You can also use Django’s low-level cache API to cache Python objects.

Reference material:

ä https://docs.djangoproject.com/en/1.5/topics/cache/
ä https://github.com/sebleier/django-redis-cache/

20.5 Identify Specific Places to Cache

Deciding where to cache is like being rst in a long line of impatient customers at Ben and Jerry’s on
free scoop day. You are under pressure to make a quick decision without being able to see what any
of the avors actually look like.

Here are things to think about:

ä Which views/templates contain the most queries?
ä Which URLs are being requested the most?
ä When should a cache for a page be invalidated?

Let’s go over the tools that will help you with these scenarios.

20.6 Consider Third-Party Caching Packages

ird-party packages will give you additional features such as:

ä Caching of QuerySets.
ä Cache invalidation settings/mechanisms.
ä Different caching backends.
ä Alternative or experimental approaches to caching.

A couple of the popular Django packages for caching are:

ä django-cache-machine
ä johnny-cache

204

https://docs.djangoproject.com/en/1.5/topics/cache/
https://github.com/sebleier/django-redis-cache/

20.7: Compression and Mini cation of HTML, CSS, and JavaScript

See http://www.djangopackages.com/grids/g/caching/ for more options.

..

WARNING: Third-Party Caching Libraries Aren't Always theAn-
swer

.

Having tried many of the third-party Django cache libraries we have to ask our readers to
test them very carefully and be prepared to drop them. ey are cheap, quick wins, but can
lead to some hair-raising debugging efforts at the worst possible times. Cache invalidation
is hard, and in our experience magical cache libraries are better for projects with more static
content. By-hand caching is a lot more work, but leads to better performance in the long run
and doesn’t risk those terrifying moments.

20.7 Compression and Minification of HTML, CSS, and
JavaScript

When a browser renders a web page, it usually has to load HTML, CSS, JavaScript, and image les.
Each of these les consumes the user’s bandwidth, slowing down page loads. One way to reduce
bandwidth consumption is via compression and mini cation. Django even provides tools for you:
GZipMiddleware and the {% spaceless %} template tag. rough the at-large Python community,
we can even use WSGI middleware that performs the same task.

e problem with making Django and Python do the work is that compression and mini cation take
up system resources, which can create bottlenecks of their own. A better approach is to use Apache
and Nginx web servers con gured to compress the outgoing content. If you are maintaining your
own web servers, this is absolutely the way to go.

A very common middle approach that we endorse is to use a third-party Django library to com-
press and minify the CSS and JavaScript in advance. Our preference is django-pipeline which comes
recommended by Django core developer Jannis Leidel.

Tools and libraries to reference:

ä Apache and Nginx compression modules
ä django-pipeline
ä django-htmlmin
ä Django’s built-in spaceless tag: http://2scoops.co/1.5-spaceless-tag

205

http://www.djangopackages.com/grids/g/caching/
http://2scoops.co/1.5-spaceless-tag

Chapter 20: Finding and Reducing Bottlenecks

ä Django’s included GZip middleware: http://2scoops.co/1.5-gzip-middleware
ä http://www.djangopackages.com/grids/g/asset-managers/

20.8 Use Upstream Caching or a Content Delivery Net-
work

Upstream caches such as Varnish are very useful. ey run in front of your web server and speed up
web page or content serving signi cantly. See http://varnish-cache.org/.

Content Delivery Networks (CDNs) like Akamai and Amazon Cloudfront serve static media such
as images, video, CSS, and JavaScript les. ey usually have servers all over the world, which serve
out your static content from the nearest location. Using a CDN rather than serving static content
from your application servers can speed up your projects.

20.9 Other Resources

Advanced techniques on scaling, performance, tuning, and optimization are beyond the scope of this
book, but here are some starting points.

On general best practices for web performance:

ä YSlow’s Web Performance Best Practices and Rules:
http://developer.yahoo.com/yslow/

ä Google’s Web Performance Best Practices:
https://developers.google.com/speed/docs/best-practices/rules_intro

On scaling large Django sites:

ä “Django Performance Tips” article by Jacob Kaplan-Moss:
http://jacobian.org/writing/django-performance-tips/

ä David Cramer often writes and speaks about scaling Django at Disqus. Read his blog and keep
an eye out for his talks, Quora posts, comments, etc. http://justcramer.com/

ä Watch videos and slides from past DjangoCons and PyCons about different develop-
ers’ experiences. Scaling practices vary from year to year and from company to company:
http://lanyrd.com/search/?q=django+scaling

206

http://2scoops.co/1.5-gzip-middleware
http://www.djangopackages.com/grids/g/asset-managers/
http://varnish-cache.org/
http://developer.yahoo.com/yslow/
https://developers.google.com/speed/docs/best-practices/rules_intro
http://jacobian.org/writing/django-performance-tips/
http://justcramer.com/
http://lanyrd.com/search/?q=django+scaling

20.10: Summary

20.10 Summary

In this chapter we explored a number of bottleneck reduction strategies including:

ä Whether you should even care about bottlenecks in the rst place
ä Pro ling your pages and queries
ä Optimizing queries
ä Using your database wisely
ä Caching queries
ä Identifying what needs to be cached
ä Compression of HTML, CSS, and JavaScript
ä Exploring other resources

In the next chapter, we’ll go over the basics of securing Django projects.

207

Chapter 20: Finding and Reducing Bottlenecks

208

21 | Security Best Practices

When it comes to security, Django has a pretty good record. is is due to security tools provided
by Django, solid documentation on the subject of security, and a thoughtful team of core developers
who are extremely responsive to security issues. However, it’s up to individual Django developers
such as ourselves to understand how to properly secure Django-powered applications.

is chapter contains a list of things helpful for securing your Django application. is list is by no
means complete. Consider it a starting point.

21.1 Harden Your Servers

Search online for instructions and checklists for server hardening. Server hardening measures in-
clude but are not limited to things like changing your SSH port and disabling/removing unnecessary
services.

21.2 Know Django's Security Features

Django 1.5’s security features include:

ä Cross-site scripting (XSS) protection
ä Cross-site request forgery (CSRF) protection
ä SQL injection protection
ä Clickjacking protection
ä Support for SSL/HTTPS, including secure cookies
ä Validation of les uploaded by users
ä Secure password storage, using the PBKDF2 algorithm with a SHA256 hash by default

209

Chapter 21: Security Best Practices

ä Automatic HTML escaping

Most of Django’s security features “just work” out of the box without additional con guration, but
there are certain things that you’ll need to con gure. We’ve highlighted some of these details in this
chapter, but please make sure that you read the official Django documentation on security as well:
https://docs.djangoproject.com/en/1.5/topics/security/

21.3 Turn Off DEBUG Mode in Production

Your production site should not be running in DEBUG mode. Attackers can nd out more than they
need to know about your production setup from a helpful DEBUG mode stack trace page. For more
information, see https://docs.djangoproject.com/en/1.5/ref/settings/#debug.

21.4 Keep Your Secret Keys Secret

If your SECRET KEY setting is not secret, this means you risk everything from remote code execution
to password hacking. Your API keys and other secrets should be carefully guarded as well. ese keys
should not even be kept in version control.

We cover the mechanics of how to keep your SECRET KEY out of version control in chapter 5, Settings
and Requirements Files, section 5.3, ‘Keep Secret Keys Out With Environment Variables.’

21.5 HTTPS Everywhere

It is always better to deploy a site behind HTTPS. Not having HTTPS means that malicious network
users can sniff authentication credentials between your site and end users. In fact, all data sent between
your site and end users is up for grabs.

Your entire site should be behind HTTPS. Your site’s static resources should also be served via
HTTPS, otherwise visitors will get warnings about “insecure resources” which could scare them
away from your site.

210

https://docs.djangoproject.com/en/1.5/topics/security/
https://docs.djangoproject.com/en/1.5/ref/settings/#debug

21.5: HTTPS Everywhere

.....

TIP: Jacob Kaplan-Moss on HTTPS vs HTTP

.

Django co-leader Jacob Kaplan-Moss says, “Your whole site should only be available via
HTTPS, not HTTP at all. is prevents getting “ resheeped” (having a session cookie stolen
when served over HTTP). e cost is usually minimal.”

If visitors try to access your site via HTTP, they should be redirected to HTTPS. is can be done
either through con guration of your web server or with Django middleware. Performance-wise, it’s
better to do this at the web server level, but if you don’t have control over your web server settings
for this, then redirecting via Django middleware is ne.

.....

PACKAGE TIP: Django Middleware Packages That Force HTTPS

.

Two packages that force HTTPS/SSL across your entire site through Django middleware:
ä django-sslify https://github.com/rdegges/django-sslify
ä django-secure https://github.com/carljm/django-secure

e difference is that django-sslify is more minimalist and does nothing but force HTTPS,
whereas django-secure also helps you con gure and check other security settings.

You should purchase an SSL certi cate from a reputable source rather than creating a self-signed
certi cate. To set it up, follow the instructions for your particular web server or platform-as-a-service.

21.5.1 Use Secure Cookies

Your site’s cookies should also be served over HTTPS. You’ll need to set the following in your settings:

..

E .

SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True

Read https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https for
more details.

211

https://github.com/rdegges/django-sslify
https://github.com/carljm/django-secure
https://docs.djangoproject.com/en/1.5/topics/security/#ssl-https

Chapter 21: Security Best Practices

21.5.2 Use HTTP Strict Transport Security (HSTS)

HSTS is usually con gured at the web server level. Follow the instructions for your web server or
platform-as-a-service.

If you have set up your own web servers, Wikipedia has sample HSTS con guration snippets that
you can use: https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

When you enable HSTS, your site’s web pages include a HTTP header that tells HSTS-compliant
browsers to only connect to the site via secure connections:

ä HSTS-compliant browsers will redirect HTTP links to HTTPS.
ä If a secure connection isn’t possible (e.g. the certi cate is self-signed or expired), an error mes-

sage will be shown and access will be disallowed.

To give you a better idea of how this works, here’s an example of what a HTTP Strict Transport
Security response header might look like:

..
E .

Strict-Transport-Security: max-age=31536000; includeSubDomains

Some HSTS con guration advice:

..
1 You should use HSTS’ includeSubDomainsmode if you can. is prevents attacks involving

using non-secured subdomains to write cookies for the parent domain.
..
2 You should also set max-age to a large value like 31536000 (12 months) or 63072000 (24

months) if you can, but keep in mind that once you set it, you can’t unset it.

..

WARNING: Choose Your HSTS Policy Duration Carefully

.

Remember that HSTS is a one-way switch. It’s a declaration that for the next N seconds,
your site will be HTTPS-only. Don’t set a HSTS policy with a max-age longer than you are
able to maintain. Browsers do not offer an easy way to unset it.

Note that HSTS should be enabled in addition to redirecting all pages to HTTPS as described earlier.

212

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

21.6: Use Django 1.5’s Allowed Hosts Validation

21.6 Use Django 1.5's Allowed Hosts Validation

As of Django 1.5, you must set ALLOWED HOSTS in your settings to a list of allowed host/domain
names. is is a security measure to prevent use of fake HTTP Host headers to submit requests.

We recommend that you avoid setting wildcard values here. For more information, read the Django
documentation on ALLOWED HOSTS and the get host() method:

ä http://2scoops.co/1.5-allowed-hosts
ä http://2scoops.co/1.5-get_host

21.7 AlwaysUse CSRF ProtectionWithHTTP Forms That
Modify Data

Django comes with cross-site request forgery protection (CSRF) built in, and usage of it is actually
introduced in Part 4 of the Django introductory tutorial. It’s easy to use, and Django even throws a
friendly warning during development when you forget to use it.

In our experience, the only use case for turning off CSRF protection across a site is
for creating machine-accessible APIs. API frameworks such as django-tastypie and django-
rest-framework do this for you. If you are writing an API from scratch that accepts
data changes, it’s a good idea to become familiar with Django’s CSRF documentation at
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/.

.....

TIP: HTML Search Forms

.

Since HTML search forms don’t change data, they use the HTTP GET method and do not
trigger Django’s CSRF protection.

You should use Django’s CsrfViewMiddleware as blanket protection across your site rather than
manually decorating views with csrf protect.

213

http://2scoops.co/1.5-allowed-hosts
http://2scoops.co/1.5-get_host
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

Chapter 21: Security Best Practices

21.7.1 Posting Data via AJAX

You should use Django’s CSRF protection even when posting data via AJAX. Do not make your
AJAX views CSRF-exempt.

Instead, when posting via AJAX, you’ll need to set an HTTP header called X-CSRFToken.

e official Django documentation includes a snippet that shows how to set this header
for only POST requests, in conjunction with jQuery 1.5 or higher’s cross-domain checking:
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/#ajax

See our complete example of how to use this snippet in practice in section 11.4, AJAX and the CSRF
Token, in chapter 11, Building REST APIs in Django.

Recommended reading:

ä https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/

21.8 Prevent Against Cross-Site Scripting (XSS) Attacks

XSS attacks usually occur when users enter malignant JavaScript that is then rendered into a template
directly. is isn’t the only method, but it is the most common. Fortunately for us, Django by default
escapes a lot of speci c characters meaning most attacks fail.

However, Django gives developers the ability to mark content strings as safe, meaning that Django’s
own safeguards are taken away. Also, if you allow users to set individual attributes of HTML tags,
that gives them a venue for injecting malignant JavaScript.

ere are other avenues of attack that can occur, so educating yourself is important.

Additional reading:

ä http://2scoops.co/1.5-docs-on-html-scraping
ä http://en.wikipedia.org/wiki/Cross-site_scripting

214

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/#ajax
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
http://2scoops.co/1.5-docs-on-html-scraping
http://en.wikipedia.org/wiki/Cross-site_scripting

21.9: Defend Against Python Code Injection Attacks

21.9 Defend Against Python Code Injection Attacks

We once were hired to help with a project that had some security issues. e requests coming into
the site were being converted from django.http.HttpRequest objects directly into strings via
creative use of the str() function, then saved to a database table. Periodically, these archived Django
requests would be taken from the database and converted into Python dicts via the eval() function.

is meant that arbitrary Python code could be run on the site at any time.

Needless to say, upon discovery the critical security aw was quickly removed. is just goes to show
that no matter how secure Python and Django might be, we always need to be aware that certain
practices are incredibly dangerous.

21.9.1 Python Built-ins That Execute Code

Beware of the eval(), exec(), and execfile() built-ins. If your project allows arbitrary strings
or les to be passed into any of these functions, you are leaving your system open to attack.

For more information, read “Eval really is dangerous” by Ned Batchelder:
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

21.9.2 Python Standard Library Modules That Can Execute Code

“Never unpickle data received from an untrusted or unauthenticated source.”

– http://docs.python.org/2/library/pickle.html

You should not use the Python standard library’s picklemodule to serialize and deserialize anything
that might contain user input. For more information, read “Why Python Pickle is Insecure” by Nadia
Alramli: http://nadiana.com/python-pickle-insecure.

21.9.3 Third-Party Libraries That Can Execute Code

When using PyYAML, only use safe load(). While the use of YAML in the Python and Django
communities is rare, it’s not uncommon to receive this format from other services. erefore, if you
are accepting YAML documents, only load them with the yaml.safe load() method.

215

http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://docs.python.org/2/library/pickle.html
http://nadiana.com/python-pickle-insecure

Chapter 21: Security Best Practices

For reference, the yaml.load() method will let you create Python objects, which is really
bad. As Ned Batchelder says, yaml.load() should be renamed to yaml.dangerous load():
http://nedbatchelder.com/blog/201302/war_is_peace.html

21.10 Validate All User Input With Django Forms

Django’s forms are a wonderful framework designed to validate Python dictionaries. While most
of the time we use them to validate incoming HTTP requests containing POST, there is nothing
limiting them to be used in this manner.

For example, let’s say we have a Django app that updates its model via CSV les fetched from another
project. To handle this sort of thing, it’s not uncommon to see code like this (albeit in not as simplistic
an example):

..

B E .

import csv
import StringIO

from .models import Purchase

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)
records_added = 0

Generate a dict per row, with the first CSV row being the keys
for row in csv.DictReader(rows, delimiter=","):

DON'T DO THIS: Tossing unvalidated data into your model.
Purchase.objects.create(**row)
records_added += 1

return records_added

In fact, what you don’t see is that we’re not checking to see if sellers, stored as a string in the Pur-
chasemodel, are actually valid sellers. We could add validation code to our add csv purchases()
function, but let’s face it, keeping complex validation code understandable as requirements and data
changes over time is hard.

216

http://nedbatchelder.com/blog/201302/war_is_peace.html

21.10: Validate All User Input With Django Forms

A better approach is to validate the incoming data with a Django Form like so:

..

E .

import csv
import StringIO

from django import forms

from .models import Purchase, Seller

class PurchaseForm(forms.ModelForm):

class Meta:
model = Purchase

def clean_seller(self):
seller = self.cleaned_data["seller"]
try:

Seller.objects.get(name=seller)
except Seller.DoesNotExist:

msg = "{0} does not exist in purchase #{1}.".format(
seller,
self.cleaned_data["purchase_number"]

)
raise forms.ValidationError(msg)

return seller

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)

records_added = 0
errors = []
Generate a dict per row, with the first CSV row being the keys.
for row in csv.DictReader(rows, delimiter=","):

Bind the row data to the PurchaseForm.

217

Chapter 21: Security Best Practices

..

form = PurchaseForm(row)
Check to see if the row data is valid.
if form.is_valid():

Row data is valid so save the record.
form.save()
records_added += 1

else:
errors.append(form.errors)

return records_added, errors

What’s really nice about this practice is that rather than cooking up our own validation system for
incoming data, we’re using the well-proven data testing framework built into Django.

21.11 Handle User-Uploaded Files Carefully

Django has two model elds that allow for user uploads: FileField and ImageField. ey come
with some built-in validation, but the Django docs also strongly advise you to “pay close attention to
where you’re uploading them and what type of les they are, to avoid security holes.”

If you are only accepting uploads of certain le types, do whatever you can do to ensure that the user
is only uploading les of those types. For example, you can:

ä Use the python-magic library to check the uploaded le’s headers:
https://github.com/ahupp/python-magic

ä Validate the le with a Python library that speci cally works with that le type. Unfortunately
this isn’t documented, but if you dig through Django’s ImageField source code, you can see
how Django uses PIL to validate that uploaded image les are in fact images.

218

https://github.com/ahupp/python-magic

21.12: Don’t Use ModelForms.Meta.exclude

..

WARNING: Custom Validators Aren't the Answer Here

.

Don’t just write a custom validator and expect it to validate your uploaded les before dan-
gerous things happen. Custom validators are run against eld content after they’ve already
been coerced to Python by the eld’s to python() method.

If the contents of an uploaded le are malicious, any validation happening after to python()
is executed may be too late.

Uploaded les must be saved to a directory that does not allow them to be executed. Take extra care
with your web server’s con guration here, because a malicious user can try to attack your site by
uploading an executable le like a CGI or PHP script and then accessing the URL.

Consult your web server’s documentation for instructions on how to con gure this, or consult the
documentation for your platform-as-a-service for details about how static assets and user-uploaded
les should be stored.

Further reading:

ä https://docs.djangoproject.com/en/1.5/ref/models/fields/#filefield

21.12 Don't Use ModelForms.Meta.exclude

When using ModelForms, always use Meta.fields. Never use Meta.exclude. e use of
Meta.exclude is considered a grave security risk. We can’t stress this strongly enough. Don’t do it.

One common reason we want to avoid the Meta.exclude attribute is that its behavior implicitly
allows all model elds to be changed except for those that we specify. When using the excludes
attribute, if the model changes after the form is written, we have to remember to change the form.
If we forget to change the form to match the model changes, we risk catastrophe.

Let’s use an example to show how this mistake could be made. We’ll start with a simple ice cream
store model:

..

E .

stores/models.py
from django.conf import settings

219

https://docs.djangoproject.com/en/1.5/ref/models/fields/#filefield

Chapter 21: Security Best Practices

..

from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

Here is the wrong way to de ne the ModelForm elds for this model:

..

B E .

DON'T DO THIS!
from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
DON'T DO THIS: Implicit definition of fields.
Too easy to make mistakes!
excludes = ("pk", "slug", "modified", "created", "owner")

In contrast, this is the right way to de ne the same ModelForm’s elds:

..

E .

from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store

220

21.12: Don’t Use ModelForms.Meta.exclude

..

Explicitly specifying the fields we want
fields = (

"title", "address_1", "address_2", "email",
"usstate", "postal_code", "city",

)

e rst code example, as it involves less typing, appears to be the better choice. It’s not, as when
you add a new model eld you now you need to track the eld in multiple locations (one model and
one or more forms).

Let’s demonstrate this in action. Perhaps after launch we decide we need to have a way of tracking
store co-owners, who have all the same rights as the owner. ey can access account information,
change passwords, place orders, and specify banking information. e store model receives a new
eld as shown on the next page:

..

E .

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
co_owners = models.ManyToManyField(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

e rst form code example which we warned against using relies on us to remember to alter it to
include the new co owners eld. If we forget, then anyone accessing that store’s HTML form can
add or remove co-owners. While we might remember a single form, what if we have more than one
ModelForm for a model? In complex applications this is not uncommon.

On the other hard, in the second example, where we used Meta.fieldswe know exactly what elds
each form is designed to handle. Changing the model doesn’t alter what the form exposes, and we
can sleep soundly knowing that our ice cream store data is more secure.

221

Chapter 21: Security Best Practices

21.13 Beware of SQL Injection Attacks

e Django ORM generates properly-escaped SQL which will protect your site from users attempt-
ing to execute malignant, arbitrary SQL code.

Django allows you to bypass its ORM and access the database more directly through raw SQL.
When using this feature, be especially careful to escape your SQL code properly.

21.14 Never Store Credit Card Data

Unless you have a strong understanding of the PCI-DSS security standards
(https://www.pcisecuritystandards.org/) and adequate time/resources/funds to val-
idate your PCI compliance, storing credit card data is too much of a liability and should be
avoided.

Instead, we recommend using third-party services like Stripe, Balanced Payments, PayPal, and others
that handle storing this information for you, and allow you to reference the data via special tokens.
Most of these services have great tutorials, are very Python and Django friendly, and are well worth
the time and effort to incorporate into your project.

.....

TIP: Read the Source Code of Open Source E-Commerce Solu-
tions

.

If you are planning to use one of the existing open source Django e-commerce solutions,
examine how the solution handles payments. If credit card data is being stored in the database,
even encrypted, then please consider using another solution.

21.15 Secure the Django Admin

Since the Django admin gives your site admins special powers that ordinary users don’t have, it’s good
practice to make it extra secure.

222

https://www.pcisecuritystandards.org/

21.15: Secure the Django Admin

21.15.1 Change the Default Admin URL

By default, the admin URL is yoursite.com/admin/. Change it to something that’s long and difficult
to guess.

.....

TIP: Jacob Kaplan-Moss Talks About Changing the Admin URL

.

Django project co-leader Jacob Kaplan-Moss says (paraphrased) that it’s an easy additional
layer of security to come up with a different name (or even different domain) for the admin.

It also prevents attackers from easily pro ling your site. For example, attackers can tell which
version of Django you’re using, sometimes down to the point-release level, by examining the
content of admin/ on a project.

21.15.2 Use django-admin-honeypot

If you’re particularly concerned about people trying to break into your Django site, django-admin-
honeypot is a package that puts a fake Django admin login screen at admin/ and logs information
about anyone who attempts to log in.

See https://github.com/dmpayton/django-admin-honeypot for more information.

21.15.3 Only Allow Admin Access via HTTPS

is is already implied in the “Use SSL/HTTPS in Production” section, but we want to especially
emphasize here that your admin needs to be SSL-secured. If your site allows straight HTTP access,
you will need to run the admin on a properly secured domain, adding to the complexity of your
deployment. Not only will you need a second deployment procedure, but you’ll need to include logic
in your URLConf in order to remove the admin from HTTP access. In the experience of the authors,
it’s much easier to put the whole site on SSL/HTTPS.

Without SSL, if you log into your Django admin on an open WiFi network, it’s trivial for someone
to sniff your admin username/password.

223

https://github.com/dmpayton/django-admin-honeypot

Chapter 21: Security Best Practices

21.15.4 Limit Admin Access Based on IP

Con gure your web server to only allow access to the Django admin to certain IP addresses. Look
up the instructions for your particular web server.

An acceptable alternative is to put this logic into middleware. It’s better to do it at the web server
level because every middleware component adds an extra layer of logic wrapping your views, but in
some cases this can be your only option. For example, your platform-as-a-service might not give you
ne-grain control over web server con guration.

21.15.5 Use the allow tags Attribute With Caution

e allow tags attribute, which is set to False by default, can be a security issue. What al-
low tags does is when set to True is allow HTML tags to be displayed in the admin.

Our hard rule is allow tags can only be used on system generated data like primary keys, dates,
and calculated values. Data such as character and text elds are completely out, as is any other user
entered data.

21.16 Secure the Admin Docs

Since the Django admin docs give your site admins a view into how the project is constructed, it’s
good practice to keep them extra secure just like the Django admin. Borrowing from the previous
section on the Django admin, we advocate the following:

ä Changing the admin docs URL to something besides yoursite.com/admin/.
ä Only allowing admin docs access via HTTPS.
ä Limiting admin docs access based on IP.

21.17 Monitor Your Sites

Check your web servers’ access and error logs regularly. Install monitoring tools and check on them
frequently. Keep an eye out for suspicious activity.

224

21.18: Keep Your Dependencies Up-to-Date

21.18 Keep Your Dependencies Up-to-Date

You should always update your projects to work with the latest stable release of Django. is is
particularly important when a release includes security xes. Subscribe to the official Django weblog
(https://www.djangoproject.com/weblog/) and keep an eye out for updates and security
information.

It’s also good to keep your dependencies up-to-date, and to watch for important security announce-
ments relating to them.

21.19 Prevent Clickjacking

Clickjacking is when a malicious site tricks users to click on a concealed element of another site that
they have loaded in a hidden frame or iframe. An example is a site with a false social media ‘login’
button that is really a purchase button on another site.

Django has instructions and components to prevent this from happening:

ä https://docs.djangoproject.com/en/1.5/ref/clickjacking/

21.20 Give Your Site a Security Checkup

Erik Romijn provides the Django community an automated security checkup for Django websites.
ere are several security practices that can easily be probed from the outside, and this is what his

site checks for. It’s not a security audit, but it’s a great, free way to make certain that your production
deployment doesn’t have any gaping security holes.

If you have a Django site in production, we recommend you go and try out:

ä http://ponycheckup.com

21.21 Put Up a Vulnerability Reporting Page

It’s a good idea to publish information on your site about how users can report security vulnerabilities
to you.

225

https://www.djangoproject.com/weblog/
https://docs.djangoproject.com/en/1.5/ref/clickjacking/
http://ponycheckup.com

Chapter 21: Security Best Practices

GitHub’s “Responsible Disclosure of Security Vulnerabilities” page is a good example of this and
rewards reporters of issues by publishing their names: https://help.github.com/articles/responsible-
disclosure-of-security-vulnerabilities

21.22 Keep Up-to-Date on General Security Practices

We end this chapter with a common-sense warning.

First, keep in mind that security practices are constantly evolving, both in the Django community and
beyond. Check Twitter, Hacker News (http://news.ycombinator.com/), and various security
blogs regularly.

Second, remember that security best practices extend well beyond those practices speci c to Django.
You should research the security issues of every part of your web application stack, and you should
follow the corresponding sources to stay up to date.

.....

TIP: Good Books and Articles on Security

.

Paul McMillan, Django core developer and security expert, recommends the following books:
ä “ e Tangled Web: A Guide to Securing Modern Web Applications”:

http://2scoops.co/book-tangled-web
ä “ e Web Application Hacker’s Handbook”: http://2scoops.co/book-web-app-hackers

In addition, we recommend the following reference sites:
ä https://code.google.com/p/browsersec/wiki/Main
ä https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

21.23 Summary

Please use this chapter as a starting point for Django security, not the ultimate reference guide. See
the Django documentation’s list for additional security topics:
http://2scoops.co/1.5-additional-security-topics

Django comes with a good security record due to the diligence of its community and attention to
detail. Security is one of those areas where it’s a particularly good idea to ask for help. If you nd
yourself confused about anything, ask questions and turn to others in the Django community for
help.

226

http://news.ycombinator.com/
http://2scoops.co/book-tangled-web
http://2scoops.co/book-web-app-hackers
https://code.google.com/p/browsersec/wiki/Main
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
http://2scoops.co/1.5-additional-security-topics

22 | Logging: What's It For, Anyway?

Logging is like rocky road ice cream. Either you can’t live without it, or you forget about it and
wonder once in awhile why it exists.

Anyone who’s ever worked on a large production project with intense demands understands the im-
portance of using the different log levels appropriately, creating module-speci c loggers, meticulously
logging information about important events, and including extra detail about the application’s state
when those events are logged.

While logging might not seem glamorous, remember that it is one of the secrets to building extremely
stable, robust web applications that scale and handle unusual loads gracefully. Logging can be used
not only to debug application errors, but also to track interesting performance metrics.

Logging unusual activity and checking logs regularly is also important for ensuring the security of
your server. In the previous chapter, we covered the importance of checking your server access and
error logs regularly. Keep in mind that application logs can be used in similar ways, whether to track
failed login attempts or unusual application-level activity.

22.1 Application Logs vs. Other Logs

is chapter focuses on application logs. Any log le containing data logged from your Python web
application is considered an application log.

In addition to your application logs, you should be aware that there are other types of logs, and that
using and checking all of your server logs is necessary. Your server logs, database logs, network logs,
etc. all provide vital insight into your production system, so consider them all equally important.

227

Chapter 22: Logging: What’s It For, Anyway?

22.2 Why Bother With Logging?

Logging is your go-to tool in situations where a stack trace and existing debugging tools aren’t
enough. Whenever you have different moving parts interacting with each other or the possibility
of unpredictable situations, logging gives you insight into what’s going on.

e different log levels available to you are DEBUG, INFO, WARNING, ERROR, and CRITICAL. Let’s
now explore when it’s appropriate to use each logging level.

22.3 When to Use Each Log Level

In places other than your production environment, you might as well use all the log levels. Log levels
are controlled in your project’s settings modules, so we can ne tune this recommendation as needed
to account for load testing and large scale user tests.

In your production environment, we recommend using every log level except for DEBUG.

Figure 22.1: Appropriate usage of CRITICAL/ERROR/WARNING/INFO logging in ice cream.

Since the same CRITICAL, ERROR, WARNING, and INFO logs are captured whether in production or
development, introspection of buggy code requires less modi cation of code. is is important to
remember, as debug code added by developers working to x one problem can create new ones.

e rest of this section covers how each log level is used.

228

22.3: When to Use Each Log Level

22.3.1 Log Catastrophes With CRITICAL

Use the CRITICAL log level only when something catastrophic occurs that requires urgent attention.

For example, if your code relies on an internal web service being available, and if that web service is
part of your site’s core functionality, then you might log at the CRITICAL level anytime that the web
service is inaccessible.

is log level is never used in core Django code, but you should certainly use it in your code anywhere
that an extremely serious problem can occur.

22.3.2 Log Production Errors With ERROR

Let’s look at core Django for an example of when ERROR level logging is appropriate. In core Django,
the ERROR log level is used very sparingly. ere is one very important place where it is used: whenever
code raises an exception that is not caught, the event gets logged by Django using the following code:

..

E .

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.error("Internal Server Error: %s", request.path,

exc_info=exc_info,
extra={

"status_code": 500,
"request": request

}
)

How does Django put this to good use? Well, when DEBUG=False is in your settings, everyone listed
in ADMINS immediately gets emailed the following:

ä A description of the error
ä A complete Python traceback from where the error occurred
ä Information about the HTTP request that caused the error

229

Chapter 22: Logging: What’s It For, Anyway?

If you’ve ever received one of those email noti cations, you know how useful ERROR logs are when
you need them most.

Similarly, we recommend that you use the ERROR log level whenever you need to log an error that is
worthy of being emailed to you or your site admins. When your code catches the exception, log as
much information as you can to be able to resolve the problem.

For example, an exception may be thrown when one of your views cannot access a needed third-party
API. When the exception is caught, you can log a helpful message and the API’s failure response, if
any.

22.3.3 Log Lower-Priority Problems With WARNING

is level is good for logging events that are unusual and potentially bad, but not as bad as ERROR-
level events.

For example, if you are using django-admin-honeypot to set up a fake admin/ login form, you might
want to log intruders’ login attempts to this level.

Django uses the log level in several parts of CsrfViewMiddleware, to log events that result in a
403 Forbidden error. For example, when an incoming POST request is missing its csrf token, the
event gets logged as follows:

..

E .

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.warning("Forbidden (%s): %s",

REASON_NO_CSRF_COOKIE, request.path,
extra={

"status_code": 403,
"request": request,

}
)

230

22.3: When to Use Each Log Level

22.3.4 Log Useful State Information With INFO

We recommend using this level to log any details that may be particularly important when analysis
is needed. ese include:

ä Startup and shutdown of important components not logged elsewhere
ä State changes that occur in response to important events
ä Changes to permissions, e.g. when users are granted admin access

In addition to this, the INFO level is great for logging any general information that may help in
performance analysis. It’s a good level to use while hunting down problematic bottlenecks in your
application and doing pro ling.

22.3.5 Log Debug-Related Messages to DEBUG

In development, we recommend using DEBUG and occasionally INFO level logging wherever you’d
consider throwing a print statement into your code for debugging purposes.

Getting used to logging this way isn’t hard. Instead of this:

..

B E .

from django.views.generic import TemplateView

from .helpers import pint_counter

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
print("Only %d pints of ice cream left." % (pints_remaining))
return context

We do this:

231

Chapter 22: Logging: What’s It For, Anyway?

..

E .

import logging

from django.views.generic import TemplateView

from .helpers import pint_counter

logger = logging.getLogger(__name__)

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super(PintView, self).get_context_data(**kwargs)
pints_remaining = pint_counter()
logger.debug("Only %d pints of ice cream left." % pints_remaining)
return context

Sprinkling print statements across your projects results in problems and technical debt:

ä Depending on the web server, a forgotten print statement can bring your site down.
ä Print statements are not recorded. If you don’t see them, then you miss what they were trying to

say.
ä When it’s time for the Django world to migrate to Python 3, old-style print statements like

print IceCream.objects.flavor() will break your code.

Unlike print statements, logging allows different report levels and different response methods. is
means that:

ä We can write DEBUG level statements, leave them in our code, and never have to worry about
them doing anything when we move code to production.

ä e response method can provide the response as email, log les, console and stdout. It can
even report as pushed HTTP requests to applications such as Sentry!

Note that there’s no need to go overboard with debug-level logging. It’s great to add log-
ging.debug() statements while you’re debugging, but there’s no need to clutter your code with
logging every single line.

232

22.4: Log Tracebacks When Catching Exceptions

Figure 22.2: Appropriate usage of DEBUG logging in ice cream.

22.4 Log Tracebacks When Catching Exceptions

Whenever you log an exception, it’s usually helpful to log the stack trace of the exception. Python’s
logging module supports this:

..
1 Logger.exception() automatically includes the traceback and logs at ERROR level.
..
2 For other log levels, use the optional exc info keyword argument.

Here’s an example of adding a traceback to a WARNING level log message:

..

E .

import logging
import requests

logger = logging.getLogger(__name__)

def get_additional_data():
try:

r = requests.get("http://example.com/something-optional/")
except requests.HTTPError, e:

233

Chapter 22: Logging: What’s It For, Anyway?

..
logger.exception(e)
logger.debug("Could not get additional data", exc_info=True)

return r

22.5 One Logger Per Module That Uses Logging

Whenever you use logging in another module, don’t import and reuse a logger from elsewhere. In-
stead, de ne a new logger speci c to the module like this:

..

E .

You can place this snippet at the top
of models.py, views.py, or any other
file where you need to log.
import logging

logger = logging.getLogger(__name__)

What this gives you is the ability to turn on and off only the speci c loggers that you currently need.
If you’re running into a strange issue in production that you can’t replicate locally, you can temporarily
turn on DEBUG logging for just the module related to the issue. en, when you identify the problem,
you can turn that logger back off in production.

22.6 Log Locally to Rotating Files

When you create a new Django project with startproject, your default settings le is con gured
to email ERROR and higher log messages to whomever you list in ADMINS. is occurs via a handler
called AdminEmailHandler that comes with Django.

In addition to this, we recommend also writing logs of level INFO and higher to rotating log les
on disk. On-disk log les are helpful in case the network goes down or emails can’t be sent to your
admins for some reason. Log rotation keeps your logs from growing to ll your available disk space.

A common way to set up log rotation is to use the UNIX logrotate utility with log-
ging.handlers.WatchedFileHandler.

234

22.7: Other Logging Tips

Note that if you are using a platform-as-a-service, you might not be able to set up rotating log les. In
this case, you may need to use an external logging service such as Loggly (http://loggly.com/).

22.7 Other Logging Tips

ä Control the logging in settings les per the Django documentation on logging:
https://docs.djangoproject.com/en/1.5/topics/logging/

ä While debugging, use the Python logger at DEBUG level.
ä After running tests at DEBUG level, try running them at INFO and WARNING levels. e re-

duction in information you see may help you identify upcoming deprecations for third-party
libraries.

ä Don’t wait until it’s too late to add logging. You’ll be grateful for your logs if and when your
site fails.

ä You can do useful things with the emails you receive when ERROR or higher level events occur.
For example, you can con gure a PagerDuty (http://www.pagerduty.com/) account to
alert you and your team repeatedly until you’ve taken action.

ä Colorizing your log output helps you spot important messages at a glance. is
blog post by logutils author Vinay Sajip explains more, with some great screenshots:
http://2scoops.co/colorizing-logging-output.

.....

PACKAGE TIP: Logutils Provides Useful Handlers

.

e logutils package by Vinay Sajip comes with a number of very interesting logging han-
dlers. Features include:

ä Colorizing of console streams under Windows, Linux and Mac OS X.
ä e ability to log to queues. Useful in situations where you want to queue up log mes-

sages to a slow handler like SMTPHandler.
ä Classes that allow you to write unit tests for log messages.
ä An enhanced HTTPHandler that supports secure connections over HTTPS.

Some of the more basic features of logutils are so useful that they have been absorbed into
the Python standard library!

235

http://loggly.com/
https://docs.djangoproject.com/en/1.5/topics/logging/
http://www.pagerduty.com/
http://2scoops.co/colorizing-logging-output

Chapter 22: Logging: What’s It For, Anyway?

22.8 Necessary Reading Material

ä https://docs.djangoproject.com/en/1.5/topics/logging/
ä http://docs.python.org/2/library/logging.html
ä http://docs.python.org/2/library/logging.config.html
ä http://docs.python.org/2/library/logging.handlers.html
ä http://docs.python.org/2/howto/logging-cookbook.html

22.9 Useful Third-Party Tools

ä Sentry (https://www.getsentry.com/) aggregates errors for you.
ä loggly.com (http://loggly.com/) simpli es log management and provides excellent query

tools.

22.10 Summary

Django projects can easily take advantage of the rich logging functionality that comes with Python.
Combine logging with handlers and analysis tools, and suddenly you have real power. You can use
logging to help you improve the stability and performance of your projects.

In the next chapter we’ll discuss signals, which become much easier to follow, debug, and understand
with the help of logging.

236

https://docs.djangoproject.com/en/1.5/topics/logging/
http://docs.python.org/2/library/logging.html
http://docs.python.org/2/library/logging.config.html
http://docs.python.org/2/library/logging.handlers.html
http://docs.python.org/2/howto/logging-cookbook.html
https://www.getsentry.com/
http://loggly.com/

23 | Signals: Use Cases and Avoid-
ance Techniques

e Short Answer: Use signals as a last resort.
e Long Answer: Often when new Djangonauts rst discover signals, they get signal-happy. ey

start sprinkling signals everywhere they can and feeling like real experts at Django.

After coding this way for a while, projects start to turn into confusing, knotted hairballs that
can’t be untangled. Signals are being dispatched everywhere and hopefully getting received
somewhere, but at that point it’s hard to tell what exactly is going on.

Many developers also confuse signals with asynchronous message queues such as what Celery
(http://www.celeryproject.org/) provides. Make no mistake, signals are synchronous
and blocking, and calling performance heavy processes via signals provide absolutely no bene-
t from a performance or scaling perspective. In fact, moving such unnecessary processes to

signals is considered code obfuscation.

Signals can be useful, but they should be used as a last resort, only when there’s no good way
to avoid using them.

23.1 When to Use and Avoid Signals

Do not use signals when:

ä e signal relates to one particular model and can be moved into one of that model’s methods,
possibly called by save().

237

http://www.celeryproject.org/

Chapter 23: Signals: Use Cases and Avoidance Techniques

ä e signal can be replaced with a custom model manager method.
ä e signal relates to a particular view and can be moved into that view.

It might be okay to use signals when:

ä Your signal receiver needs to make changes to more than one model.
ä You want to dispatch the same signal from multiple apps and have them handled the same way

by a common receiver.
ä You want to invalidate a cache after a model save.
ä You have an unusual scenario that needs a callback, and there’s no other way to handle it besides

using a signal. For example, you want to trigger something based on the save() or init()
of a third-party app’s model. You can’t modify the third-party code and extending it might be
impossible, so a signal provides a trigger for a callback.

23.2 Signal Avoidance Techniques

Let’s go over some scenarios where you can simplify your code and remove some of the signals that
you don’t need.

23.2.1 Using Custom Model Manager Methods Instead of Signals

Let’s imagine that our site handles user-submitted ice cream-themed events, and each ice cream event
goes through an approval process. ese events are set with a status of “Unreviewed” upon creation.

e problem is that we want our site administrators to get an email for each event submission so they
know to review and post things quickly.

We could have done this with a signal, but unless we put in extra logic in the post save() code,
even administrator created events would generate emails.

An easier way to handle this use case is to create a custom model manager method and use that in
your views. is way, if an event is created by an administrator, they don’t have to go through the
review process.

Since a code example is worth a thousand words, here is how we would create such a method:

238

23.2: Signal Avoidance Techniques

..

E .

events/managers.py
from django.db import models

class EventManager(models.Manager):

def create_event(self, title, start, end, creator):
event = self.model(title=title,

start=start,
end=end,
creator=creator)

event.save()
event.notify_admins()
return event

Now that we have our custom manager with its custom manager method in place, let’s attach it to
our model (which comes with a notify admins() method:

..

E .

events/models.py
from django.conf import settings
from django.core.mail import mail_admins
from django.db import models

from model_utils.models import TimeStampedModel

from .managers import EventManager

class Event(TimeStampedModel):

STATUS_UNREVIEWED, STATUS_REVIEWED = (0, 1)
STATUS_CHOICES = (

(STATUS_UNREVIEWED, "Unreviewed"),
(STATUS_REVIEWED, "Reviewed"),

)

239

Chapter 23: Signals: Use Cases and Avoidance Techniques

..

title = models.CharField(max_length=100)
start = models.DateTimeField()
end = models.DateTimeField()
status = models.IntegerField(choices=STATUS_CHOICES,

default=STATUS_UNREVIEWED)
creator = models.ForeignKey(settings.AUTH_USER_MODEL)

objects = EventManager()

def notify_admins(self):
create the subject and message
subject = "{user} submitted a new event!".format(

user=self.creator.get_full_name())
message = """TITLE: {title}

START: {start}
END: {end}""".format(title=self.title, start=self.start,

end=self.end)

Send to the admins!
mail_admins(subject=subject,

message=message,
fail_silently=False)

Using this follows a similar pattern to using the User model. To generate an event, instead of calling
create(), we call a create event() method.

..

E .

>>> from django.contrib.auth import get_user_model
>>> from django.utils import timezone
>>> from events.models import Event
>>> user = get_user_model().get(username="audreyr")
>>> now = timezone.now()
>>> event = Event.objects.create_event(
... title="International Ice Cream Tasting Competition",
... start=now,
... end=now,

240

23.2: Signal Avoidance Techniques

..
... user = user
)

23.2.2 Validate Your Model Elsewhere

If you’re using a pre save signal to trigger input cleanup for a speci c model, try writing a custom
validator for your eld(s) instead.

If validating through a ModelForm, try overriding your model’s clean() method instead.

23.2.3 Override Your Model's Save or Delete Method Instead

If you’re using pre save and post save signals to trigger logic that only applies to one particular
model, you might not need those signals. You can often simply move the signal logic into your model’s
save() method.

e same applies to overriding delete() instead of using pre delete and post delete signals.

241

Chapter 23: Signals: Use Cases and Avoidance Techniques

242

24 | What About Those RandomUtil-
ities?

24.1 Create a Core App for Your Utilities

Sometimes we end up writing shared classes or little general-purpose utilities that are useful ev-
erywhere. ese bits and pieces don’t belong in any particular app. We don’t just stick them into a
sort-of-related random app, because we have a hard time nding them when we need them. We also
don’t like placing them as “random” modules in the root of the project.

Our way of handling our utilities is to place them into a Django app called core that contains modules
which contains functions and objects for use across a project. (Other developers follow a similar
pattern and call this sort of app common, generic, util , or utils.)

For example, perhaps our project has both a custom model manager and a custom view mixin used
by several different apps. Our core app would therefore look like:

..

E .

core/
__init__.py
managers.py # contains the custom model manager
models.py
views.py # Contains the custom view mixin

243

Chapter 24: What About ose Random Utilities?

.....

TIP: Django App Boilerplate: The models.py Module

.

Don’t forget that in order to make a Python module be considered a Django App, a mod-
els.py module is required! However, you only need to make the core module a Django app
if you need to do one or more of the following:

ä Have non-abstract models in core.
ä Have admin auto-discovery working in core.
ä Have template tags and lters.

Now, if we want to import our custom model manager and/or view mixin , we import using the same
pattern of imports we use for everything else:

..

E .

from core.managers import PublishedManager
from core.views import IceCreamMixin

24.2 Django's Own Swiss Army Knife

e Swiss Army Knife is a multi-purpose tool that is compact and useful. Django has a number of
useful helper functions that don’t have a better home than the django.utils package. It’s tempting
to dig into the code in django.utils and start using things, but don’t. Most of those modules are
designed for internal use and their behavior or inclusion can change between Django version. Instead,
read https://docs.djangoproject.com/en/1.5/ref/utils/ to see which modules in there
are stable.

.....

TIP: Malcolm Tredinnick On Django's Utils Package.

.

Django core developer Malcolm Tredinnick liked to think of django.utils as being in the
same theme as Batman’s utility belt: indispensable tools that are used everywhere internally.

ere are some gems in there that have turned into best practices:

244

https://docs.djangoproject.com/en/1.5/ref/utils/

24.2: Django’s Own Swiss Army Knife

24.2.1 django.contrib.humanize

is is a set of localized template lters designed to give user presented data a more ‘human’ touch. For
example it includes a lter called ‘intcomma’ that converts integers to strings containing commas (or
periods depending on locale) every three digits. While django.contrib.humanize’s lters they
are useful for making template output more attractive, you can also import each lter individually as
a function. is is quite handy when processing any sort of text, especially when used in conjunction
with REST APIs.

24.2.2 django.utils.html.remove tags(value, tags)

When you need to accept content from users and want to strip out a list of tags, this function removes
those tags for you while keeping all other content untouched.

24.2.3 django.utils.html.strip tags(value)

When you need to accept content from users and have to strip out anything that could be HTML,
this function removes those tags for you while keeping all the existing text between tags.

24.2.4 django.utils.text.slugify(value)

Whatever you do, don’t write your own version of the slugify() function; as any inconsistency
from what Django does with this function will cause subtle yet nasty problems. Instead, use the same
function that Django uses and slugify() consistently.

245

Chapter 24: What About ose Random Utilities?

.....

PACKAGE TIP: slugify and languages besides English

.

Our friend Tomasz Paczkowski pointed out that we should note that slugify() can cause
problems with localization:

..

E .

>>> from django.utils.text import slugify
>>> slugify(u"straße") # German
u"strae"

Fortunately, unicode-slugify, is a Mozilla foundation supported project that addresses the
issue:

..

E .

>>> from slugify import slugify
>>> slugify(u"straße") # Again with German
u"straße"

24.2.5 django.utils.timezone

It’s good practice for you to have time zone support enabled. Chances are that your users live in more
than one time zone.

When you use Django’s time zone support, date and time information is stored in the database
uniformly in UTC format and converted to local time zones as needed.

24.2.6 django.utils.translation

Much of the non-English speaking world appreciates use of this tool, as it provides Django’s i18n
support.

246

24.3: Summary

24.3 Summary

We follow the practice of putting often reused les into utility packages. We enjoy being able to
remember where we placed our code. Many Python libraries often follow this pattern, and we covered
some of the more useful utility functions provided by Django.

247

Chapter 24: What About ose Random Utilities?

248

25 | Deploying Django Projects

Deployment of Django projects is an in-depth topic that could ll an entire book on its own. Here,
we touch upon deployment at a high level.

25.1 Using Your Own Web Servers

You should deploy your Django projects with WSGI.

Django 1.5’s startproject command now sets up a wsgi.py le for you. is le contains the
default con guration for deploying your Django project to any WSGI server.

e most commonly-used WSGI deployment setups are:

..
1 Gunicorn behind a Nginx proxy.
..
2 Apache with mod wsgi.

Here’s a quick summary comparing the two.

Setup Advantages Disadvantages

Gunicorn (sometimes with
Nginx)

Gunicorn is written in pure Python.
Supposedly this option has slightly
better memory usage, but your mileage
may vary. Has built-in Django
integration.

Documentation is brief for nginx
(but growing). Not as
time-tested, so you may run into
confusing configuration edge
cases and the occasional bug.

249

Chapter 25: Deploying Django Projects

Setup Advantages Disadvantages
Apache with mod wsgi Has been around for a long time and is

tried and tested. Very stable. Lots of
great documentation, to the point of
being kind of overwhelming.

Apache configuration can be
overly complex and painful for
some. Lots of crazy conf files.

Table 25.1: Gunicorn vs Apache

..

WARNING: Do not use mod python

.

As of June 16th, 2010 the mod python project is officially dead. e last active main-
tainer of mod python and the official Django documentation explicitly warns against using
mod python and we concur.

ere’s a lot of debate over which option is faster. Don’t trust benchmarks blindly, as many of them
are based on serving out tiny “Hello World” pages, which of course will have different performance
from your own web application.

Ultimately, though, both choices are in use in various high volume Django sites around the world.
Con guration of any high volume production server can be very difficult, and if your site is busy
enough it’s worth investing time in learning one of these options very well.

e disadvantage of setting up your own web servers is the added overhead of extra sysadmin work.
It’s like making ice cream from scratch rather than just buying and eating it. Sometimes you just
want to buy ice cream so that you can focus on the enjoyment of eating it.

25.2 Using a Platform as a Service

If you’re working on a small side project or are a founder of a small startup, you’ll de nitely save time
by using a Platform as a Service (PaaS) instead of setting up your own servers. Even large projects
can bene t from the advantages of using them.

First, a public service message:

250

25.2: Using a Platform as a Service

.....

TIP: Never Get Locked Into a Single Hosting Provider

.

ere are amazing services which will host your code, databases, media assets, and also pro-
vide a lot of wonderful accessories services. ese services, however, can go through changes
that can destroy your project. ese changes include crippling price increases, performance
degradation, unacceptable terms of service changes, untenable service license agreements,
sudden decreases in availability, or can simply go out of business.

is means it’s in your best interests to do your best to avoid being forced into architectural
decisions based on the needs of your hosting provider. Be ready to be able to move from one
provider to another without major restructuring of your project.

We make certain none of our projects are intrinsically tied to any hosting solution, meaning
we are not locked into a single vendor.

As a WSGI-compliant framework, Django is supported on a lot of Platform as a Service providers.
If you go with a PaaS, choose one that can scale with little or no effort as your traffic/data grows.

e most commonly-used ones as of this writing that specialize in automatic/practically automatic
scaling are:

ä Heroku (http://heroku.com) is a popular option in the Python community because
of its wealth of documentation and easy ability to scale. If you choose this option, read
http://www.deploydjango.com/ and http://www.theherokuhackersguide.com/
by Randall Degges.

ä Gondor.io (http://gondor.io) - Developed and managed by two Django core developers,
James Tauber and Brian Rosner, Gondor.io was designed for people who want to deploy their
Python sites early and often.

ä DotCloud (http://dotcloud.com) is a Python powered Platform as a Service with a sand-
box tier that lets you deploy an unlimited number of applications.

251

http://heroku.com
http://www.deploydjango.com/
http://www.theherokuhackersguide.com/
http://gondor.io
http://dotcloud.com

Chapter 25: Deploying Django Projects

.....

TIP: Read the Platform as a Service Documentation

.

We originally wanted to provide a quick and easy mini-deployment section for each of the
services we listed. However, we didn’t want this book to become quickly outdated, so instead
we ask the reader to follow the deployment instructions listed on each site.

See each of these services’ individual documentation for important details about how your
requirements les, environment variables, and settings les should be set up when using
a Platform as a Service. For example, most of these services insist on the placement of a
requirements.txt le in the root of the project.

Figure 25.1: How ice cream is deployed to cones and bowls.

25.3 Summary

In this chapter we gave some guidelines and advice for deploying Django projects. We also suggested
the use of Platforms as a Service, and also advised not to alter your application structure too much
to accommodate a provider.

252

26 | Where and How to Ask Django
Questions

All developers get stuck at one point or another on something that’s impossible to gure out alone.
When you get stuck, don’t give up!

26.1 What to Do When You're Stuck

Follow these steps to increase your chances of success:

..
1 Troubleshoot on your own as much as possible. For example, if you’re having issues with a

package that you just installed, make sure the package has been installed into your virtualenv
properly, and that your virtualenv is active.

..
2 Read through the documentation in detail, to make sure you didn’t miss something.
..
3 See if someone else has had the same issue. Check Google, mailing lists, and StackOver ow.
..
4 Can’t nd anything? Now ask on StackOver ow. Construct a tiny example that illustrates the

problem. Be as descriptive as possible about your environment, the package version that you
installed, and the steps that you took.

..
5 Still don’t get an answer after a couple of days? Try asking on the django-users mailing list or

in IRC.

26.2 How to Ask Great Django Questions in IRC

IRC stands for Internet Relay Chat. ere are channels like #python and #django on the Freenode
IRC network, where you can meet other developers and get help.

253

Chapter 26: Where and How to Ask Django Questions

A warning to those who are new to IRC: sometimes when you ask a question in a busy IRC channel,
you get ignored. Sometimes you even get trolled by cranky developers. Don’t get discouraged or take
it personally!

e IRC #python and #django channels are run entirely by volunteers. You can and should help out
and answer questions there too, whenever you have a few free minutes.

..
1 When you ask something in IRC, be sure that you’ve already done your homework. Use it as

a last resort for when StackOver ow doesn’t suffice.
..
2 Paste a relevant code snippet and traceback into https://gist.github.com/ (or another

pastebin).
..
3 Ask your question with as much detail and context as possible. Paste the link to your code snip-

pet/traceback. Be friendly and honest.

.....

TIP: Use a Pastebin!

.

Don’t ever paste code longer than a few characters into IRC. Seriously, don’t do it.
You’ll annoy people. Use a pastebin!

..
4 When others offer advice or help, thank them graciously and make them feel appreciated. A

little gratitude goes a long way. A lot of gratitude could make someone’s day. ink about how
you would feel if you were volunteering to help for free.

26.3 Insider Tip: Be Active in the Community

e biggest secret to getting help when you need it is simple: be an active participant in the Python
and Django communities.

e more you help others, the more you get to know people in the community. e more you put in,
the more you get back.

26.3.1 10 Easy Ways to Participate

..
1 Attend Python and Django user group meetings. Join all the local groups that you can nd

on http://wiki.python.org/moin/LocalUserGroups. Search meetup.com for Python
and join all the groups near you.

254

https://gist.github.com/
http://wiki.python.org/moin/LocalUserGroups

26.4: Summary

..
2 Attend Python and Django conferences in your region and country. Learn from the experts.

Stay for the entire duration of the sprints and contribute to open-source projects. You’ll meet
other developers and learn a lot.

..
3 Contribute to open source Django packages and to Django itself. Find issues and volunteer to

help with them. File issues if you nd bugs.
..
4 Join #python and #django on IRC Freenode and help out.
..
5 Find and join other smaller niche Python IRC channels. ere’s #py-

ladies, and there are also foreign-language Python IRC channels listed on
http://www.python.org/community/irc/.

..
6 Answer Django questions on StackOver ow.
..
7 Meet other fellow Djangonauts on Twitter. Be friendly and get to know everyone.
..
8 Join the Django group on LinkedIn, comment on posts, and occasionally post things that are

useful to others.
..
9 Volunteer for diversity efforts. Get involved with PyLadies and help make the Python com-

munity more welcoming to women.
..

10 Subscribe to Planet Django, an aggregated feed of blog posts about Django. Comment on
blogs and get to know the community. http://www.planetdjango.org/

26.4 Summary

One of the strengths of Django is the human factor of the community behind the framework. Assume
a friendly, open stance when you need guidance and odds are the community will rise to the task of
helping you. ey won’t do your job for you, but in general they will reach out and attempt to answer
questions or point you in the right direction.

255

http://www.python.org/community/irc/
http://www.planetdjango.org/

Chapter 26: Where and How to Ask Django Questions

256

27 | Closing Thoughts

While we’ve covered a lot of ground here, this is also just the tip of the ice cream cone. We plan
to add more material and revise the existing material as time goes on, with a new edition released
whenever a new version of Django is released.

If this book does well, we may write other books in the future.

We’d genuinely love to hear from you. Email us and let us know:

ä Did you nd any of the topics unclear or confusing?
ä Any errors or omissions that we should know about?
ä What additional topics would you like us to cover in a future edition of this book?

We hope that this has been a useful and worthwhile read for you. Cheers to your success with your
Django projects!

Daniel Greenfeld
pydanny@cartwheelweb.com
Twitter: @pydanny

Audrey Roy
audreyr@cartwheelweb.com
Twitter: @audreyr

257

https://twitter.com/pydanny
https://twitter.com/audreyr

Chapter 27: Closing oughts

258

Appendix A: Packages Mentioned In
This Book

is is a list of the third-party Python and Django packages that we’ve described or mentioned in
this book. We’ve also snuck in a few really useful packages that we don’t mention in the book but
that we feel are extremely useful.

As for the packages that we’re currently using in our own projects: the list has some overlap with this
list but is always changing. Please don’t use this as the de nitive list of what you should and should
not be using.

Core

Django http://djangoproject.com
e web framework for perfectionists with deadlines.

Pillow http://pypi.python.org/pypi/Pillow
Friendly installer for the Python Imaging Library.

South http://south.readthedocs.org
Easy database migrations for Django

Sphinx http://sphinx-doc.org/
Documentation tool

django-braces http://django-braces.readthedocs.org
Drop-in mixins that really empower Django’s Class Based Views

django-debug-toolbar http://pypi.python.org/pypi/django-debug-toolbar
Display panels used for debugging Django HTML views.

259

http://djangoproject.com
http://pypi.python.org/pypi/Pillow
http://south.readthedocs.org
http://sphinx-doc.org/
http://django-braces.readthedocs.org
http://pypi.python.org/pypi/django-debug-toolbar

Chapter 27: Appendix A: Packages Mentioned In is Book

django-model-utils http://pypi.python.org/pypi/django-model-utils
Useful model utilities including a time stamped model.

virtualenv http://virtualenv.org
Virtual Environments for Python

Asynchronous

celery http://www.celeryproject.org/
Distributed Task Queue

django-celery http://docs.celeryproject.org/en/latest/django/
Celery integration for Django

rq https://pypi.python.org/pypi/rq
A simple, lightweight, library for creating background jobs, and processing them.

Deployment

dj-database-url http://pypi.python.org/pypi/dj-database-url
is simple Django utility allows you to easily use Heroku for database access.

django-heroku-memcacheify http://pypi.python.org/pypi/django-heroku-memcacheify
Easy Memcached settings con guration for Heroku.

Forms

django-crispy-forms http://django-crispy-forms.readthedocs.org/
Rendering controls for Django forms

django- oppyforms http://django-floppyforms.readthedocs.org/
Form eld, widget, and layout that can work with django-crispy-forms.

Logging

newrelic http://newrelic.com
Realtime logging and aggregation platform

sentry http://getsentry.com
Exceptional error aggregation

260

http://pypi.python.org/pypi/django-model-utils
http://virtualenv.org
http://www.celeryproject.org/
http://docs.celeryproject.org/en/latest/django/
https://pypi.python.org/pypi/rq
http://pypi.python.org/pypi/dj-database-url
http://pypi.python.org/pypi/django-heroku-memcacheify
http://django-crispy-forms.readthedocs.org/
http://django-floppyforms.readthedocs.org/
http://newrelic.com
http://getsentry.com

Project Templates

django-skel https://github.com/rdegges/django-skel
Django project template optimized for Heroku deployments

django-twoscoops-project https://github.com/twoscoops/django-twoscoops-project
e sample project layout from the book.

REST APIs

django-rest-framework http://django-rest-framework.org/
Expose Model and non-Model resources as a RESTful API.

django-tastypie http://django-tastypie.readthedocs.org
Expose Model and non-Model resources as a RESTful API.

Security

django-secure http://pypi.python.org/pypi/django-secure
Helps you lock down your site’s security using practices advocated by security specialists

django-sslify https://github.com/rdegges/django-sslify
Forcing HTTPs across your Django site

Testing

coverage http://coverage.readthedocs.org/
Checks how much of your code is covered with tests

django-discover-runner http://pypi.python.org/pypi/django-discover-runner
Test runner based off unittest2

factory boy https://pypi.python.org/pypi/factory_boy
A package that generates model test data.

model mommy https://pypi.python.org/pypi/model_mommy
Another package that generates model test data.

mock https://pypi.python.org/pypi/mock
Not explicitly for Django, this allows you to replace parts of your system with mock objects.

is project made its way into the standard library as of Python 3.3.

261

https://github.com/rdegges/django-skel
https://github.com/twoscoops/django-twoscoops-project
http://django-rest-framework.org/
http://django-tastypie.readthedocs.org
http://pypi.python.org/pypi/django-secure
https://github.com/rdegges/django-sslify
http://coverage.readthedocs.org/
http://pypi.python.org/pypi/django-discover-runner
https://pypi.python.org/pypi/factory_boy
https://pypi.python.org/pypi/model_mommy
https://pypi.python.org/pypi/mock

Chapter 27: Appendix A: Packages Mentioned In is Book

User Registration

django-allauth http://django-allauth.readthedocs.org/
General purpose registration and authentication. Includes Email, Twitter, Facebook, GitHub,
Google, and lots more.

django-social-auth http://django-social-auth.readthedocs.org/
Easy social authentication and registration for Twitter, Facebook, GitHub, Google, and lots
more.

Miscellaneaous

django-extensions http://django-extensions.readthedocs.org/
Provides shell plus management command and a lot of other utilities.

django-haystack http://django-haystack.readthedocs.org/
Full-text search that works with SOLR, Elasticsearch, and more.

django-pipeline http://django-pipeline.readthedocs.org/
Compression of CSS and JS. Use with cssmin and jsmin packages.

python-dateutil https://pypi.python.org/pypi/python-dateutil
Provides powerful extensions to Python’s datetime module.

psycopg2 http://pypi.python.org/pypi/psycopg2
PostgreSQL database adapter

requests http://docs.python-requests.org
Easy-to-use HTTP library that replaces Python’s urllib2 library.

unicode-slugify https://github.com/mozilla/unicode-slugify
A Mozilla supported slugi er that supports unicode characters.

virtualenvwrapper http://www.doughellmann.com/projects/virtualenvwrapper/
Makes virtualenv better for Mac OS X and Linux!

262

http://django-allauth.readthedocs.org/
http://django-social-auth.readthedocs.org/
http://django-extensions.readthedocs.org/
http://django-haystack.readthedocs.org/
http://django-pipeline.readthedocs.org/
https://pypi.python.org/pypi/python-dateutil
http://pypi.python.org/pypi/psycopg2
http://docs.python-requests.org
https://github.com/mozilla/unicode-slugify
http://www.doughellmann.com/projects/virtualenvwrapper/

Appendix B: Troubleshooting

is appendix contains tips for troubleshooting common Django installation issues.

Identifying the Issue

Often, the issue is one of:

ä at Django isn’t on your system path, or
ä at you’re running the wrong version of Django

Run this at the command line:

..
E .

python -c "import django; print django.get_version()"

If you’re running Django 1.5, you should see the following output:

..
E .

1.5

Don’t see the same output? Well, at least you now know your problem. Read on to nd a solution.

Our Recommended Solutions

ere are all sorts of different ways to resolve Django installation issues (e.g. manually editing your
PATH environment variable), but the following tips will help you x your setup in a way that is

263

Chapter 27: Appendix B: Troubleshooting

consistent with what we describe in chapter on e Optimal Django Environment Setup.

Check Your Virtualenv Installation

Is virtualenv installed properly on your computer? At the command line, try creating a test virtual
environment and activating it.

If you’re on a Mac or Linux system, verify that this works:

..

E .

$ virtualenv testenv
$ source testenv/bin/activate

If you’re on Windows, verify that this works:

..

E .

C:\code\> virtualenv testenv
C:\code\> testenv\Scripts\activate

Your virtualenv should have been activated, and your command line prompt should now have the
name of the virtualenv prepended to it.

On Mac or Linux, this will look something like:

..
E .

(testenv) $

On Windows, this will look something like:

..
E .

(testenv) >

Did you run into any problems? If so, study the Virtualenv documentation
(http://virtualenv.org) and x your installation of Virtualenv.

264

http://virtualenv.org

If not, then continue on.

Check if Your Virtualenv Has Django 1.5 Installed

With your virtualenv activated, check your version of Django again:

..
E .

python -c "import django; print django.get_version()"

If you still don’t see 1.5, then try using pip to install Django 1.5 into testenv:

..
E .

(testenv) $ pip install Django==1.5

Did it work? Check your version of Django again. If not, check that you have pip installed correctly
as per the official documentation (http://pip-installer.org).

Check for Other Problems

Follow the instructions in the official Django docs for troubleshooting problems related to running
django-admin.py: https://docs.djangoproject.com/en/1.5/faq/troubleshooting/

265

http://pip-installer.org
https://docs.djangoproject.com/en/1.5/faq/troubleshooting/

Chapter 27: Appendix B: Troubleshooting

266

Appendix C: Additional Resources

is appendix lists additional resources that are applicable to modern Django and Python. While
there is more content available then what is listed here, much of it is out of date. erefore, we will
only list content that is current and applicable to Django 1.5, Python 2.7.x, or Python 3.3.x.

Beginner Material

Getting Started with Django
http://gettingstartedwithdjango.com/
Partially funded by the Django Software Foundation this is a free video lesson series for Django
1.5. e creator, Kenneth Love, was a technical reviewer for this book, and many of the prac-
tices advocated in the video series match those presented in this book.

Official Django 1.5 Documentation
https://docs.djangoproject.com/en/1.5/

e official Django documentation has seen a signi cant amount of improvement with the
release of version 1.5. If you’ve used a previous version of Django, make sure that you are
reading the correct edition of the documentation.

Learn Python the Hard Way
http://learnpythonthehardway.org/
If you don’t know Python, this free for HTML, paid for lessons resources is one of the best
places to start. e author takes you through Python the same way he learned guitar, through
rote and repitition. Don’t worry about the title, this is a good way to get started with Python.

267

http://gettingstartedwithdjango.com/
https://docs.djangoproject.com/en/1.5/
http://learnpythonthehardway.org/

Chapter 27: Appendix C: Additional Resources

More Advanced Material

Two Scoops of Django: Best Practices for Django 1.5 (print version)
http://www.2scoops.co/1.5-two-scoops-print-edition/
In addition to the electronic version you are reading, you can also order the print (dead tree)
version of this book from Amazon. is is generated from the PDF version of the ebook, so
there will be differences from the Kindle and ePub versions.

Pro Django, 2rd Edition
http://2scoops.co/pro-django/
A wonderful deep-dive into Django, this book has been updated for Python 3 and Django 1.5.
We’re friends and fans of the author, Marty Alchin, and readily admit that it helped us ramp
up our Django skills.

Python Cookbook, 3rd Edition
http://2scoops.co/python-cookbook/
An incredible book by Python luminaries David Beazley and Brian Jones, it’s lled with deli-
cious ice cream recipies... err... incredibly useful Python recipes for any developer using Python
3.3 or greater.

ccbv.co.uk
http://ccbv.co.uk/
A website that has provides detailed descriptions, with full methods and attributes, for each of
Django’s class-based generic views.

pydanny’s blog
http://pydanny.com/tag/django.html
A good amount of this blog is about modern Django. As the author of this blog is also one of
this book’s authors, the style of the blog loosely resembles the content of this book.

GoDjango
https://godjango.com
A series of short videos that each focus on something challenging to do with Django. e more
recent episodes are for Django 1.5 and you can access more material by “going pro”.

Other Material on Best Practices

Writing Idiomatic Python 3.3
http://2scoops.co/idiomatic-python-3.3
Jeff Knupp’s book has a lot of great tips for optimizing your code and increasing the legibility

268

http://www.2scoops.co/1.5-two-scoops-print-edition/
http://2scoops.co/pro-django/
http://2scoops.co/python-cookbook/
http://ccbv.co.uk/
http://pydanny.com/tag/django.html
https://godjango.com
http://2scoops.co/idiomatic-python-3.3

of your work. ere are a few places where his work differs from our practices (imports being
the largest area of difference), but overall we concur with his practices.

Writing Idiomatic Python 2.7
http://2scoops.co/idiomatic-python-2.7.3
Jeff Knupp’s Idiomatic Python, but for Python 2.7.3.

Lincoln Loop’s Django Best Practices
http://lincolnloop.com/django-best-practices/

is free website resource is a really good reference of practices similiar to those espoused in
this book.

Effective Django
http://effectivedjango.com
Nathan Yergler’s free website is an excellent combination of notes and examples developed for
talks prepared for PyCon 2012, PyOhio 2012, PyCon 2013, and Eventbrite web engineering.

269

http://2scoops.co/idiomatic-python-2.7.3
http://lincolnloop.com/django-best-practices/
http://effectivedjango.com

Chapter 27: Appendix C: Additional Resources

270

Acknowledgments

is book was not written in a vacuum. We would like to express our thanks to everyone who had a
part in putting it together.

The Python and Django Community

e Python and Django communities are an amazing family of friends and mentors. anks to the
combined community we met each other, fell in love, and were inspired to write this book.

Technical Reviewers

We can’t begin to express our gratitude to our technical reviewers. Without them this book would
have been littered with inaccuracies and broken code. Special thanks to Malcolm Tredinnick for pro-
viding an amazing wealth of technical editing and oversight, Kenneth Love for his constant editing
and support, Jacob Kaplan-Moss for his honesty, Randall Degges for pushing us to do it, Lynn Root
for her pinpoint observations, and Jeff Triplett for keeping our stuff agnostic.

Malcolm Tredinnick lived in Sydney, Australia and spent much of his time travelling internation-
ally. He was a Python user for over 15 years and Django user since just after it was released
to the public in mid-2005, becoming a Django core developer in 2006. A user of many pro-
gramming languages, he felt that Django was one of the better web libraries/frameworks that
he used professionally and was glad to see its incredibly broad adoption over the years. In 2012
when he found out that we were co-hosting the rst PyCon Philippines, he immediately vol-
unteered to y out, give two talks, and co-run the sprints. Sadly, he passed away in March
of 2013, just two months after this book was released. His leadership and generosity in the
Python and Django community will always be remembered.

271

Chapter 27: Acknowledgments

Kenneth Love is a full-stack, freelance web developer who focuses mostly on Python and Django.
He works for himself at Gigantuan and, with his long-time development partner Chris Jones,
at Brack3t. Kenneth created the ‘Getting Started with Django’ tutorial series for getting people
new to Django up to speed with best practices and techniques. He also created the django-
braces package which brings several handy mixins to the generic class-based views in Django.

Lynn Root is an engineer for Red Hat on the freeIPA team, known for breaking VMs and being
loud about it. Living in San Francisco, she is the founder & leader of PyLadiesSF, and the
de facto missionary for the PyLadies word. Lastly, she has an unhealthy obsession for coffee,
Twitter, and socializing.

Barry Morrison is a self-proclaimed geek, lover of all technology. Multidiscipline Systems Admin-
istrator with more than 10 years of professional experience with Windows, Linux and storage
in both the Public and Private sectors. He is also a Python and Django a cionado and Arduino
tinkerer.

Jacob Kaplan-Moss is the co-BDFL of Django and a partner at Revolution Systems which provides
support services around Django and related open source technologies. Jacob previously worked
at World Online, where Django was invented, where he was the lead developer of Ellington,
a commercial Web publishing platform for media companies.

Jeff Triplett is an engineer, photographer, trail runner, and KU Basketball fan who works for Revo-
lution Systems in Lawrence, Kansas where he helps businesses and startups scale. He has been
working with Django since early 2006 and he previously worked at the Lawrence Journal-
World, a Kansas newspaper company, in their interactive division on Ellington aka ‘ e CMS’
which was the original foundation for Django.

Lennart Regebro created his rst website in 1994, and has been working full time with open source
web development since 2001. He is an independent contractor based in Kraków, Poland and
the author of ‘Porting to Python 3’.

Randall Degges is a happy programmer with a passion for building API services for developers. He
is an owner and Chief Hacker at Telephony Research, where he uses Python to build high
performance web systems. Randall authored e Heroku Hacker’s Guide, the only Heroku
book yet published. In addition to writing and contributing to many open source libraries,
Randall also maintains a popular programming blog.

Sean Bradley is a developer who believes Bach’s Art of the Fugue and Knuth’s Art of Computer
Programming are different chapters from the same bible. He is founder of Bravo ix, the rst
online video subscription service in the U.S. dedicated exclusively to the performing arts, and
founder of BlogBlimp, a technology consultancy with a passion for Python. In addition, Sean
runs Concert Talent, a production company providing corporate entertainment, engagement

272

marketing, comprehensive educational outreach, as well as international talent management
and logistical support for major recording and touring artists. When he isn’t busy coding, he’s
performing on stages in China, spending time above the treeline in the Sierras, and rebooting
music education as a steering committee member for the Los Angeles Arts Consortium.

Chapter Reviewers

e following are people who gave us an amazing amount of help and support with speci c chapters
during the writing of this book. We would like to thank Preston Holmes for his contributions to the
User model chapter, Tom Christie for his sage observations to the REST API chapter, and Donald
Stufft for his support on the Security chapter.

Preston Holmes is a recovering scientist now working in education. Passionate about open source
and Python, he is one of Django’s newest core developers. Preston was involved in the devel-
opment of some of the early tools for the web with Userland Frontier.

Tom Christie is a committed open source hacker and Djangonaut, living and working in the won-
derful seaside city of Brighton, UK. Along with Web development he also has a background
in speech recognition and network engineering. He is the author of the ‘Django REST frame-
work’ package.

Donald Stufft is a Software Engineer at Nebula, Inc. In addition to working on securing OpenStack
and Nebula’s platform, he is an open source junkie and involved in several OSS projects. He
is the creator of Crate.io (a Python packaging index) and Slumber (a generic wrapper around
RESTful apis). He lives in Philadelphia with his wife and daughter.

Alpha Reviewers

During the Alpha period an amazing number of people sent us corrections and cleanups. is list
includes: Brian Shumate, Myles Braithwaite, Robert Wȩglarek, Lee Hinde, Gabe Jackson, Jax, Bap-
tiste Mispelon, Matt Johnson, Kevin Londo, Esteban Gaviota, Kelly Nicholes, Jamie Norrish, Amar
Šahinovíc, Patti Chen, Jason Novinger, Dominik Aumayr, Hrayr Artunyan, Simon Charettes, Joe
Golton, Nicola Marangon, Farhan Syed, Florian Apolloner, Rohit Aggarwa, Vinod Kurup, Mickey
Cheong, Martin Bächtold, Phil Davis, Michael Reczek, Prahlad Nrsimha Das, Peter Heise, Russ
Ferriday, Carlos Cardoso, David Sauve, Maik Hoepfel, Timothy Goshinski, Florian Apolloner,
Francisco Barros, João Oliveira, Zed Shaw, and Jannis Leidel.

273

Chapter 27: Acknowledgments

Beta Reviewers

During the Beta period an awesome number of people sent us corrections, cleanups, bug xes,
and suggestions. is includes: Francisco Barros, Florian Apolloner, David Beazley, Alex Gaynor,
Jonathan Hartley, Stefane Fermigier, Deric Crago, Nicola Marangon, Bernardo Brik, Zed Shaw,
Zoltán Árokszállási, Charles Denton, Marc Tamlyn, Martin Bächtold, Carlos Cardoso, William
Adams, Kelly Nichols, Nick August, Tim Baxter, Joe Golton, Branko Vukelic, John Goodleaf,
Graham Dumpleton, Richard Cochrane, Mike Dewhirst, Jonas Obrist, Anthony Burke, Timo-
thy Goshinski, Felix Ingram, Steve Klass, Vinay Sajip, Olav Andreas Lindekleiv, Kal Sze, John
Jensen, Jonathan Miller, Richard Corden, Dan Poirier, Patrick Jacobs, R. Michael Herberge, and
Dan Loewenherz.

Final Reviewers

During the Final period the following individuals sent us corrections, cleanups, bug xes, and
suggestions. is includes: Chris Jones, Davide Rizzo, Tiberiu Ana, Dave Castillo, Jason Bit-
tel, Erik Romijn, Darren Ma, Dolugen Buuraldaa, Anthony Burke, Hamish Downer, Wee Liat,
Álex González, Wee Liat, Jim Kalafut, Harold Ekstrom, Felipe Coelho, Andrew Jordan, Karol
Bregu la, Charl Botha, Fabio Natali, Tayfun Sen, Garry Cairns, Dave Murphy, Chris Foresman,
Josh Schreuder, Marcin Pietranik, Vraj Mohan, Yan Kalchevskiy, Jason Best, Richard Donkin, Pe-
ter Valdez, Jacinda Shelly, Jamie Norrish, Daryl Yu, Xianyi Lin, Tyler Perkins, Andrew Halloran,
Tobias G. Waaler, Robbie Totten, Erik Romijn, Gabriel Duman, Nick Smith, Lachlan Musicman,
Eric Woudenberg, Jim Munro, Larry Prince, Hamid Hoorzad

If your name is not on this list but should be, please send us an email so that we can make corrections!

Typesetting

We originally typeset the alpha version the book with iWork Pages. When we ran into the limitations
of Pages, we converted the book to LaTeX. We thank Laura Gelsomino for helping us with all of
our LaTeX issues and for improving upon the book layout. We also thank Matt Harrison for his
guidance and support in the generation of the kindle and ePub versions.

Laura Gelsomino is an economist keen about art and writing, and with a soft spot for computers,
who found the meeting point between her interests the day she discovered LaTeX. Since that

274

day, she habitually nds any excuse to vent her aesthetic sense on any text she can lay her hands
on, beginning with her economic models.

Matt Harrison has over a decade of Python experience across the domains of search, build manage-
ment and testing, business intelligence and storage. He has taught hundreds how to program
in Python at PyCON, OSCON and other conferences and user groups. Most recently he was
worked to analyze data to optimize pro ts, vendor negotiations, and manufacturing yields.

275

Chapter 27: Acknowledgments

276

Index

–settings, 30
<con guration root>, 16, 17
<django project root>, 17, 19
<repository root>, 16–19, 40

unicode (), 150
{% block %}, 128, 130, 133
{% extends %}, 130
{% includes %}, 133
{% load %}, 128
{% static %}, 128
{{ block.super }}, 129–132

abstract base classes, 49, 51, 52, 59
AbstractBaseUser, 159
AbstractUser, 158
Acknowledgments, 271–275

Alpha Reviewers, 273
Beta Reviewers, 274
Chapter Reviewers, 273
Final Reviewers, 274
Technical Reviewers, 271–273
Typesetting, 274–275

AJAX, 112
allow tags warning, 152, 224
Apache, 205, 249
assets/, 20

caching, 54, 119, 139, 143, 200, 201, 203–205,
207, 238, 260

CBVs, see Class-Based Views
Class-Based Views, 61–84, 105, 133, 200
clean() methods, 92, 93, 102
Coding Style, 1–8
Content Delivery Networks, 206
Continuous Integration, 187
coverage.py, 180
CSRF, 112, 213, 214
custom eld validators, 87–89, 92

database normalization, 54
DEBUG, 30, 32, 33, 210
Django Packages, 187, 188
Django’s Admin, 147
Django’s admin, 154
django-admin.py, 14, 32
django-admin.py startproject, 16–17, 21
django-debug-toolbar, 199
django-discover-runner, 180, 181
django.contrib.admin, 147–154, 222
django.contrib.admindocs, 152–154, 224
django.contrib.humanize, 245
django.utils.html.remove tags(), 245
django.utils.html.strip tags(), 245
django.utils.html.timezone, 246
django.utils.translation, 246

277

Index

DJANGO SETTINGS MODULE, 31
Documentation, 193–198
docutils, 153
Don’t Repeat Yourself, 27, 29, 64, 65, 95, 141,

184

environment variables, 34–39
eval(), 215
exec(), 215
exec le(), 215

FBVs, 61–67, see Function-Based Views
lters, 137–138, 186
xtures, 9–10

form.is valid(), 102
form invalid(), 75
form valid(), 74, 79–81, 102
Forms, 6, 74–83, 85–104

get absolute url(), 151
get env setting(), 38, 39
Git, 14
Gunicorn, 249

HSTS, 212
HTTPS, 210, 211

ImproperlyCon gured, 39
indexes, 49, 59
intcomma, 245
IPAddressField, 56
is valid(), 102

Jinja2, 135, 144–146

kept out of version control, 28

license, ii
Linux, 11, 20, 21, 35, 264

local settings anti-pattern, 28–29, 34
logging, 227–236

CRITICAL, 228, 229
DEBUG, 228, 231–233
ERROR, 228, 229
exceptions, 233–234
INFO, 228, 231
WARNING, 228, 230

logrotate, 234
Loose coupling, 64, 65

Mac OS X, 11, 20, 21, 35, 264
manage.py, 14, 32
Memcached, 203
Mercurial, 14
messages, 80
Meta.exclude, 219–221
Meta. elds, 219–221
method resolution order, 71
mixins, 70, 71, 80, 81, 100, 244
mod python warning, 250
mod wsgi, 249
model managers, 56–58, 238, 239
ModelForms, 85, 87, 89–91, 94, 102, 103, 219–

221, 241
multi-table inheritance, 49–52
Multiple Settings Files, 29–34
MySQL, 10, 122, 189, 202, 203

NASA, xix, 179
Nginx, 205, 249

Open Source Initiative, 176
Open Source Licenses, 176

pastebin, 254
pickle, 215

278

Index

pip, 11, 13, 14, 153, 168, 169, 172, 175, 176, 193,
265

Platform as a Service, 42, 250–252
PostgreSQL, 9–11, 49, 56, 122, 189, 202, 203
PowerShell, 36
print(), 231–232
PROJECT ROOT, 43, 44
proxy models, 49, 51
Python Package Index, 168, 176
PYTHONPATH, 14
PyYAML security warning, 215, 216

README.rst, 16, 22
Redis, 203
requirements, 40–42
requirements.txt, 16, 21
requirements/, 40
REST APIs, 105–114
reStructuredText, 173, 193, 194

SECRET KEY, 28–29, 34–39, 210
select related(), 124, 200
settings, 19, 27–45
settings/base.py, 38
settings/local.py, 30, 32, 35
signals, 237, 238, 241
site assets/, 20
slugify(), 137, 245, 246
Sphinx, 172, 173, 193, 195
SQLite3, 9, 10, 189
SSL, 211
STATICFILES DIRS, 20

template tags, 8, 137–142, 186
TEMPLATE STRING IF INVALID, 135
templates, 16, 20–22, 42, 44, 79, 81, 83, 115–

135, 145

test coverage, 187–191
testing, 179–191
TimeStampedModel, 51
twoscoops project, 24

unicode(), 150
unit tests, 181
Upstream Caches, 206
URLConfs, 17, 19, 63–67, 134, 153
User model, 155–166

validation, 102
Vanilla Steak, 72
Varnish, 206
virtualenv, 11, 12, 14, 20–21, 35, 36, 153, 169,

171, 176, 264, 265
virtualenvwrapper, 12, 36

Windows, 11, 20, 36, 264
WSGI, 19, 205, 249

Zen of Python, 118, 142

279

	Dedication
	List of Figures
	List of Tables
	Authors' Notes
	A Few Words From Daniel Greenfeld
	A Few Words From Audrey Roy

	Introduction
	A Word About Our Recommendations
	Why Two Scoops of Django?
	Before You Begin
	This book is intended for Django 1.5 and Python 2.7.x
	Each Chapter Stands On Its Own

	Conventions Used in This Book
	Core Concepts
	Keep It Simple, Stupid
	Fat Models, Helper Modules, Thin Views, Stupid Templates
	Start With Django By Default
	Stand on the Shoulders of Giants

	Coding Style
	The Importance of Making Your Code Readable
	PEP 8
	The Word on Imports
	Use Explicit Relative Imports
	Avoid Using Import *
	Django Coding Style Guidelines
	Never Code to the IDE (or Text Editor)
	Summary

	The Optimal Django Environment Setup
	Use the Same Database Engine Everywhere
	Fixtures Are Not a Magic Solution
	You Can't Examine an Exact Copy of Production Data Locally
	Different Databases Have Different Field Types/Constraints

	Use Pip and Virtualenv
	Install Django and Other Dependencies via Pip
	Use a Version Control System
	Summary

	How to Lay Out Django Projects
	Django 1.5's Default Project Layout
	Our Preferred Project Layout
	Top Level: Repository Root
	Second Level: Django Project Root
	Third Level: Configuration Root

	Sample Project Layout
	What About the Virtualenv?
	Using a Startproject Template to Generate Our Layout
	Other Alternatives
	Summary

	Fundamentals of Django App Design
	The Golden Rule of Django App Design
	A Practical Example of Apps in a Project

	What to Name Your Django Apps
	When in Doubt, Keep Apps Small
	Summary

	Settings and Requirements Files
	Avoid Non-Versioned Local Settings
	Using Multiple Settings Files
	A Development Settings Example
	Multiple Development Settings

	Keep Secret Keys Out With Environment Variables
	A Caution Before Using Environment Variables for Secrets
	How to Set Environment Variables Locally

	How to Set Environment Variables in Production
	Handling Missing Secret Key Exceptions

	Using Multiple Requirements Files
	Installing From Multiple Requirements Files
	Using Multiple Requirements Files With Platforms as a Service (PaaS)

	Handling File Paths in Settings
	Summary

	Database/Model Best Practices
	Basics
	Break Up Apps With Too Many Models
	Don't Drop Down to Raw SQL Until It's Necessary
	Add Indexes as Needed
	Be Careful With Model Inheritance
	Model Inheritance in Practice: The TimeStampedModel
	Use South for Migrations

	Django Model Design
	Start Normalized
	Cache Before Denormalizing
	Denormalize Only if Absolutely Needed
	When to Use Null and Blank

	Model Managers
	Summary

	Function- and Class-Based Views
	When to Use FBVs or CBVs
	Keep View Logic Out of URLConfs
	Stick to Loose Coupling in URLConfs
	What if we aren't using CBVs?

	Try to Keep Business Logic Out of Views
	Summary

	Best Practices for Class-Based Views
	Using Mixins With CBVs
	Which Django CBV Should Be Used for What Task?
	General Tips for Django CBVs
	Constraining Django CBV Access to Authenticated Users
	Performing Custom Actions on Views With Valid Forms
	Performing Custom Actions on Views With Invalid Forms

	How CBVs and Forms Fit Together
	Views + ModelForm Example
	Views + Form Example

	Summary

	Common Patterns for Forms
	The Power of Django Forms
	Pattern 1: Simple ModelForm With Default Validators
	Pattern 2: Custom Form Field Validators in ModelForms
	Pattern 3: Overriding the Clean Stage of Validation
	Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)
	Pattern 5: Reusable Search Mixin View
	Summary

	More Things to Know About Forms
	Use the POST Method in HTML Forms
	Don't Disable Django's CSRF Protection

	Know How Form Validation Works
	Form Data Is Saved to the Form, Then the Model Instance

	Summary

	Building REST APIs in Django
	Fundamentals of Basic REST API Design
	Implementing a Simple JSON API
	REST API Architecture
	Code for an App Should Remain in the App
	Try to Keep Business Logic Out of API Views
	Grouping API URLs
	Test Your API

	AJAX and the CSRF Token
	Posting Data via AJAX

	Additional Reading
	Summary

	Templates: Best Practices
	Follow a Minimalist Approach
	Template Architecture Patterns
	2-Tier Template Architecture Example
	3-Tier Template Architecture Example
	Flat Is Better Than Nested

	Limit Processing in Templates
	Gotcha 1: Aggregation in Templates
	Gotcha 2: Filtering With Conditionals in Templates
	Gotcha 3: Complex Implied Queries in Templates
	Gotcha 4: Hidden CPU Load in Templates
	Gotcha 5: Hidden REST API Calls in Templates

	Don't Bother Making Your Generated HTML Pretty
	Exploring Template Inheritance
	block.super Gives the Power of Control
	Useful Things to Consider
	Avoid Coupling Styles Too Tightly to Python Code
	Common Conventions
	Location, Location, Location!
	Use Named Context Objects
	Use URL Names Instead of Hardcoded Paths
	Debugging Complex Templates
	Don't Replace the Django Template Engine

	Summary

	Template Tags and Filters
	Filters Are Functions
	Filters Are Easy to Test
	Filters, Code Reuse, and Performance
	When to Write Filters

	Custom Template Tags
	Template Tags Are Harder To Debug
	Template Tags Make Code Reuse Harder
	The Performance Cost of Template Tags
	When to Write Template Tags

	Naming Your Template Tag Libraries
	Loading Your Template Tag Modules
	Watch Out for This Crazy Anti-Pattern

	Summary

	Tradeoffs of Replacing Core Components
	The Temptation to Build FrankenDjango
	Case Study: Replacing the Django Template Engine
	Excuses, Excuses
	What if I'm Hitting the Limits of Templates?
	What About My Unusual Use Case?

	Summary

	Working With the Django Admin
	It's Not for End Users
	Admin Customization vs. New Views
	Viewing String Representations of Objects
	Adding Callables to ModelAdmin Classes
	Django's Admin Documentation Generator
	Securing the Django Admin and Django Admin Docs
	Summary

	Dealing With the User Model
	Use Django's Tools for Finding the User Model
	Use settings.AUTH_USER_MODEL for Foreign Keys to User

	Custom User Fields for Projects Starting at Django 1.5
	Option 1: Linking Back From a Related Model
	Option 2: Subclass AbstractUser
	Option 3: Subclass AbstractBaseUser

	Summary

	Django's Secret Sauce: Third-Party Packages
	Examples of Third-Party Packages
	Know About the Python Package Index
	Know About DjangoPackages.com
	Know Your Resources
	Tools for Installing and Managing Packages
	Package Requirements
	Wiring Up Django Packages: The Basics
	Step 1: Read the Documentation for the Package
	Step 2: Add Package and Version Number to Your Requirements
	Step 3: Install the Requirements Into Your Virtualenv
	Step 4: Follow the Package's Installation Instructions Exactly

	Troubleshooting Third-Party Packages
	Releasing Your Own Django Packages
	What Makes a Good Django Package?
	Purpose
	Scope
	Documentation
	Tests
	Activity
	Community
	Modularity
	Availability on PyPI
	Proper Version Numbers
	License
	Clarity of Code

	Summary

	Testing Stinks and Is a Waste of Money!
	Testing Saves Money, Jobs, and Lives
	How to Structure Tests
	How to Write Unit Tests
	Each Test Method Tests One Thing
	Don't Write Tests That Have to Be Tested
	Don't Rely on Fixtures
	Things That Should Be Tested

	Continuous Integration
	Resources for Continuous Integration

	Who Cares? We Don't Have Time for Tests!
	The Game of Test Coverage
	Setting Up the Test Coverage Game
	Step 1: Set Up a Test Runner
	Step 2: Run Tests and Generate Coverage Report
	Step 3: Generate the report!

	Playing the Game of Test Coverage
	Summary

	Documentation: Be Obsessed
	Use reStructuredText for Python Docs
	Use Sphinx to Generate Documentation From reStructuredText

	What Docs Should Django Projects Contain?
	Wikis and Other Documentation Methods
	Summary

	Finding and Reducing Bottlenecks
	Should You Even Care?
	Speed Up Query-Heavy Pages
	Find Excessive Queries With Django Debug Toolbar
	Reduce the Number of Queries
	Speed Up Common Queries

	Get the Most Out of Your Database
	Know What Doesn't Belong in the Database
	Getting the Most Out of PostgreSQL
	Getting the Most Out of MySQL

	Cache Queries With Memcached or Redis
	Identify Specific Places to Cache
	Consider Third-Party Caching Packages
	Compression and Minification of HTML, CSS, and JavaScript
	Use Upstream Caching or a Content Delivery Network
	Other Resources
	Summary

	Security Best Practices
	Harden Your Servers
	Know Django's Security Features
	Turn Off DEBUG Mode in Production
	Keep Your Secret Keys Secret
	HTTPS Everywhere
	Use Secure Cookies
	Use HTTP Strict Transport Security (HSTS)

	Use Django 1.5's Allowed Hosts Validation
	Always Use CSRF Protection With HTTP Forms That Modify Data
	Posting Data via AJAX

	Prevent Against Cross-Site Scripting (XSS) Attacks
	Defend Against Python Code Injection Attacks
	Python Built-ins That Execute Code
	Python Standard Library Modules That Can Execute Code
	Third-Party Libraries That Can Execute Code

	Validate All User Input With Django Forms
	Handle User-Uploaded Files Carefully
	Don't Use ModelForms.Meta.exclude
	Beware of SQL Injection Attacks
	Never Store Credit Card Data
	Secure the Django Admin
	Change the Default Admin URL
	Use django-admin-honeypot
	Only Allow Admin Access via HTTPS
	Limit Admin Access Based on IP
	Use the allow_tags Attribute With Caution

	Secure the Admin Docs
	Monitor Your Sites
	Keep Your Dependencies Up-to-Date
	Prevent Clickjacking
	Give Your Site a Security Checkup
	Put Up a Vulnerability Reporting Page
	Keep Up-to-Date on General Security Practices
	Summary

	Logging: What's It For, Anyway?
	Application Logs vs. Other Logs
	Why Bother With Logging?
	When to Use Each Log Level
	Log Catastrophes With CRITICAL
	Log Production Errors With ERROR
	Log Lower-Priority Problems With WARNING
	Log Useful State Information With INFO
	Log Debug-Related Messages to DEBUG

	Log Tracebacks When Catching Exceptions
	One Logger Per Module That Uses Logging
	Log Locally to Rotating Files
	Other Logging Tips
	Necessary Reading Material
	Useful Third-Party Tools
	Summary

	Signals: Use Cases and Avoidance Techniques
	When to Use and Avoid Signals
	Signal Avoidance Techniques
	Using Custom Model Manager Methods Instead of Signals
	Validate Your Model Elsewhere
	Override Your Model's Save or Delete Method Instead

	What About Those Random Utilities?
	Create a Core App for Your Utilities
	Django's Own Swiss Army Knife
	django.contrib.humanize
	django.utils.html.remove_tags(value, tags)
	django.utils.html.strip_tags(value)
	django.utils.text.slugify(value)
	django.utils.timezone
	django.utils.translation

	Summary

	Deploying Django Projects
	Using Your Own Web Servers
	Using a Platform as a Service
	Summary

	Where and How to Ask Django Questions
	What to Do When You're Stuck
	How to Ask Great Django Questions in IRC
	Insider Tip: Be Active in the Community
	10 Easy Ways to Participate

	Summary

	Closing Thoughts
	Appendix A: Packages Mentioned In This Book
	Appendix B: Troubleshooting
	Identifying the Issue
	Our Recommended Solutions
	Check Your Virtualenv Installation
	Check If Your Virtualenv Has Django 1.5 Installed
	Check For Other Problems

	Appendix C: Additional Resources
	Beginner Material
	More Advanced Material
	Other Material on Best Practices

	Acknowledgments
	Index

